Kesehatan ibu hamil merupakan prioritas utama dalam tujuan pembangunan kesehatan global, mengingat masih tingginya Angka Kematian Ibu . Salah satu penyebab kematian ibu adalah keterlambatan dalam mendeteksi faktor risiko seperti hipertensi dan diabetes gestasional. Penelitian ini bertujuan untuk membangun model prediksi tingkat risiko kesehatan ibu hamil menggunakan teknik Data Mining dengan algoritma Decision Tree. Data yang digunakan bersumber dari UCI Machine Learning Repository yang terdiri dari 1.014 data rekam medis dengan atribut meliputi usia, tekanan darah, kadar gula darah, suhu tubuh, dan detak jantung. Pengolahan data dilakukan menggunakan perangkat lunak RapidMiner Studio. Hasil penelitian menunjukkan bahwa algoritma mampu mengklasifikasikan risiko ke dalam tiga kategori (Low, Mid, High Risk) dengan tingkat akurasi sebesar [Akurasi 74.43%]. Berdasarkan struktur pohon keputusan yang terbentuk, atribut kadar gula darah ditemukan sebagai faktor paling dominan dalam menentukan tingkat risiko. Model ini diharapkan dapat membantu tenaga medis dalam melakukan deteksi dini komplikasi kehamilan.Kata kunci: Klasifikasi Sampah; Convolutional Neural Network (CNN); Deep Learning; Pengelolaan Sampah; Visi Komputer
Copyrights © 2025