JOURNAL OF SCIENCE AND SOCIAL RESEARCH
Vol 8, No 2 (2025): May 2025

PERBANDINGAN ALGORITMA LOGISTIC REGRESSION DAN NAÏVE BAYES CLASSIFIER DALAM IDENTIFIKASI PENYAKIT LIVER

Handayani, Yuni (Unknown)
Hidayat, Taufik (Unknown)
Novitaningrum, Dian (Unknown)
Ismail, Abdul Rahman (Unknown)



Article Info

Publish Date
12 May 2025

Abstract

Abstract: Liver disease is a condition caused by various factors that can damage liver function, such as viral infections and alcohol consumption. Additionally, obesity is closely associated with liver damage. Over time, liver damage can lead to serious consequences. The presence of experts in this field is crucial to addressing liver disease by identifying the symptoms experienced by patients, determining the type of liver disease affecting them, and providing appropriate treatment guidance. The severity of this disease in Indonesia is evident from various studies, research, and related observations. In this study, researchers utilized and compared two data mining classification methods, namely Logistic Regression and Naïve Bayes, to diagnose liver disease. The findings revealed that the Logistic Regression method achieved an accuracy rate of 84.62% with an area under the curve (AUC) value of 0.841, while the Naïve Bayes method achieved an accuracy rate of 83.71% with an AUC value of 0.816. Based on the t-test, it was found that there was no significant difference between the two methods, with a p-value of 0.821 > 0.05. This indicates that the performance of Logistic Regression is comparable to Naïve Bayes in diagnosing liver disease.Keyword: Liver Disease, Logistic Regression, Naïve Bayes, Confusion Matrix, ROC CurveAbstrak: Penyakit hati atau liver adalah kondisi yang disebabkan oleh berbagai faktor yang dapat merusak fungsi hati, seperti infeksi virus dan konsumsi alkohol. Selain itu, obesitas juga memiliki kaitan erat dengan kerusakan hati. Dalam jangka panjang, kerusakan hati dapat menimbulkan konsekuensi serius. Kehadiran ahli di bidang ini sangat diperlukan untuk membantu menangani masalah penyakit hati dengan mengidentifikasi gejala yang dialami pasien, menentukan jenis penyakit hati yang diderita, serta memberikan panduan penanganan yang sesuai. Skala permasalahan penyakit ini di Indonesia dapat diamati melalui berbagai studi, penelitian, dan pengamatan yang telah dilakukan. Dalam penelitian ini, peneliti menerapkan serta membandingkan dua metode klasifikasi data mining, yaitu Logistic Regression dan Naïve Bayes, untuk mendeteksi penyakit liver. Hasil penelitian menunjukkan bahwa Logistic Regression memiliki tingkat akurasi sebesar 84,62% dengan nilai area under the curve (AUC) sebesar 0,841, sementara Naïve Bayes mencapai akurasi 83,71% dengan AUC sebesar 0,816. Berdasarkan hasil uji-t, tidak ditemukan perbedaan signifikan antara kedua metode tersebut, dengan nilai p = 0,821 yang lebih besar dari 0,05. Ini menunjukkan bahwa performa Logistic Regression sebanding dengan Naïve Bayes dalam proses diagnosis penyakit liver.Kata kunci: Penyakit Liver, Logistic Regression, Naïve Bayes, Confusion Matrix, ROC Curve

Copyrights © 2025






Journal Info

Abbrev

JSSR

Publisher

Subject

Computer Science & IT Economics, Econometrics & Finance Education Social Sciences

Description

Journal of Science and Social Research is accepts research works from academicians in their respective expertise of studies. Journal of Science and Social Research is platform to disclose the research abilities and promote quality and excellence of young researchers and experienced thoughts towards ...