Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
Vol 2 No 2 (2018): Februari 2018

Optimasi Vektor Bobot Pada Learning Vector Quantization Menggunakan Algoritme Genetika Untuk Identifikasi Jenis Attention Deficit Hyperactivity Disorder Pada Anak

Raissa Arniantya (Fakultas Ilmu Komputer, Universitas Brawijaya)
Budi Darma Setiawan (Fakultas Ilmu Komputer, Universitas Brawijaya)
Putra Pandu Adikara (Fakultas Ilmu Komputer, Universitas Brawijaya)



Article Info

Publish Date
15 Aug 2017

Abstract

One of mental disorder which common happened on children under 7 years old. Child with ADHD characterized by lack of ability to concentrate, excessive behavior, and behavior that spontaneously out of control. Type of ADHD are inattention, hyperactive and impulsive. If child with ADHD unidentified early, it will causes psychosocial problem but not many people are aware about ADHD so they need a system for identify the type of ADHD. System uses classification methods Learning Vector Quantization. Some cases classification, LVQ has weak accuracy so it needs optimization methods Genetic Algorithm (GA) for improve the accuracy. LVQ's weight vector will be optimized by GA through genetic process until generated optimum weight vector which LVQ uses for training and testing process. Testing against LVQ and LVQ-GA generate LVQ's accuracy 77% and LVQ-GA's accuracy 92% with best parameters are population size is 75, crossover rate is 0.6, mutation rate is 0.4, number of generation is 80, learning rate is 0.001, learning rate decrement is 0.1, maximum epoch is 1000 and learning rate minimum is 10-16.One of mental disorder which common happened on children under 7 years old. Child with ADHD characterized by lack of ability to concentrate, excessive behavior, and behavior that spontaneously out of control. Type of ADHD are inattention, hyperactive and impulsive. If child with ADHD unidentified early, it will causes psychosocial problem but not many people are aware about ADHD so they need a system for identify the type of ADHD. System uses classification methods Learning Vector Quantization. Some cases classification, LVQ has weak accuracy so it needs optimization methods Genetic Algorithm (GA) for improve the accuracy. LVQ's weight vector will be optimized by GA through genetic process until generated optimum weight vector which LVQ uses for training and testing process. Testing against LVQ and LVQ-GA generate LVQ's accuracy 77% and LVQ-GA's accuracy 92% with best parameters are population size is 75, crossover rate is 0.6, mutation rate is 0.4, number of generation is 80, learning rate is 0.001, learning rate decrement is 0.1, maximum epoch is 1000 and learning rate minimum is 10-16.One of mental disorder which common happened on children under 7 years old. Child with ADHD characterized by lack of ability to concentrate, excessive behavior, and behavior that spontaneously out of control. Type of ADHD are inattention, hyperactive and impulsive. If child with ADHD unidentified early, it will causes psychosocial problem but not many people are aware about ADHD so they need a system for identify the type of ADHD. System uses classification methods Learning Vector Quantization. Some cases classification, LVQ has weak accuracy so it needs optimization methods Genetic Algorithm (GA) for improve the accuracy. LVQ's weight vector will be optimized by GA through genetic process until generated optimum weight vector which LVQ uses for training and testing process. Testing against LVQ and LVQ-GA generate LVQ's accuracy 77% and LVQ-GA's accuracy 92% with best parameters are population size is 75, crossover rate is 0.6, mutation rate is 0.4, number of generation is 80, learning rate is 0.001, learning rate decrement is 0.1, maximum epoch is 1000 and learning rate minimum is 10-16.One of mental disorder which common happened on children under 7 years old. Child with ADHD characterized by lack of ability to concentrate, excessive behavior, and behavior that spontaneously out of control. Type of ADHD are inattention, hyperactive and impulsive. If child with ADHD unidentified early, it will causes psychosocial problem but not many people are aware about ADHD so they need a system for identify the type of ADHD. System uses classification methods Learning Vector Quantization. Some cases classification, LVQ has weak accuracy so it needs optimization methods Genetic Algorithm (GA) for improve the accuracy. LVQ's weight vector will be optimized by GA through genetic process until generated optimum weight vector which LVQ uses for training and testing process. Testing against LVQ and LVQ-GA generate LVQ's accuracy 77% and LVQ-GA's accuracy 92% with best parameters are population size is 75, crossover rate is 0.6, mutation rate is 0.4, number of generation is 80, learning rate is 0.001, learning rate decrement is 0.1, maximum epoch is 1000 and learning rate minimum is 10-16.

Copyrights © 2018






Journal Info

Abbrev

j-ptiik

Publisher

Subject

Computer Science & IT Control & Systems Engineering Education Electrical & Electronics Engineering Engineering

Description

Jurnal Pengembangan Teknlogi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya merupakan jurnal keilmuan dibidang komputer yang memuat tulisan ilmiah hasil dari penelitian mahasiswa-mahasiswa Fakultas Ilmu Komputer Universitas Brawijaya. Jurnal ini diharapkan dapat mengembangkan penelitian ...