Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
Vol 2 No 12 (2018): Desember 2018

Prediksi Harga Batu Bara Menggunakan Support Vector Regression (SVR)

Olivia Bonita (Fakultas Ilmu Komputer, Universitas Brawijaya)
Lailil Muflikhah (Fakultas Ilmu Komputer, Universitas Brawijaya)
Ratih Kartika Dewi (Fakultas Ilmu Komputer, Universitas Brawijaya)



Article Info

Publish Date
13 Aug 2018

Abstract

Coal price prediction is needed as support for coal user industrial to buy coal. Prediction result can be used to make next budgeting. This research uses Support Vector Regression (SVR) method to predict coal price. SVR is applied through data normalization, hessian matrix calculation, α searching through sequential learning, and regression function calculation. Kernel for hessian matrix stage can determine accuracy of prediction, so in this research Gaussian RBF kernel and ANOVA kernel are used and analyzed the effects. To obtain predictive results with good accuracy, testing of each parameter is performed and evaluated by mean absolute percentage error (MAPE). The average of MAPE for testing are 9,64% with Gaussian RBF kernel and 8,38% with ANOVA kernel, which are categorized good, on 48 training data for 12 testing data and optimal parameters are ε 0,00001; cLR 0.01; C 0.5; λ 0.5 with Gaussian RBF kernel and 1 with ANOVA kernel. SVR gives the most optimal result when predicting the next month price. The predicted results of the two kernels are not too different, but the ANOVA kernel works better on this coal price data.

Copyrights © 2018






Journal Info

Abbrev

j-ptiik

Publisher

Subject

Computer Science & IT Control & Systems Engineering Education Electrical & Electronics Engineering Engineering

Description

Jurnal Pengembangan Teknlogi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya merupakan jurnal keilmuan dibidang komputer yang memuat tulisan ilmiah hasil dari penelitian mahasiswa-mahasiswa Fakultas Ilmu Komputer Universitas Brawijaya. Jurnal ini diharapkan dapat mengembangkan penelitian ...