cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta pusat,
Dki jakarta
INDONESIA
JLBG (Jurnal Lingkungan dan Bencana Geologi) (Journal of Environment and Geological Hazards)
ISSN : 20867794     EISSN : 25028804     DOI : -
Core Subject : Science, Social,
Jurnal Lingkungan dan Bencana Geologi (JLBG) merupakan terbitan berkala Pusat Air Tanah dan Geologi Tata Lingkungan, yang terbit triwulan (tiga nomor) dalam setahun sejak tahun 2010. Bulan terbit setiap tahunnya adalah bulan April, Agustus dan Desember. JLBG telah terakreditasi LIPI dengan nomor akreditasi 692/AU/P2MI-LIPI/07/2015.
Arjuna Subject : -
Articles 5 Documents
Search results for , issue "Vol 1, No 3 (2010)" : 5 Documents clear
Aliran lava produk letusan celah Tahun 1941 serta kemungkinan terjadinya letusan samping baru di Gunung Semeru Jawa Timur Deden Wahyudin
Jurnal Lingkungan dan Bencana Geologi Vol 1, No 3 (2010)
Publisher : Badan Geologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3889.857 KB) | DOI: 10.34126/jlbg.v1i3.21

Abstract

SARIGunung Semeru, 3676 m dpl. merupakan salah satu gunung api aktif tipe-A di Pulau Jawa yang tidak pernah berhenti meletus. Aktivitasnya berupa letusan strombolian dan vulkanian lemah yang terjadi dengan interval antara 5 menit sampai 15 menit yang merupakan karakteristik kegiatan Gunung Semeru sejak 1967. Dari sejarah kegiatan vulkaniknya letusan Gunung Semeru tidak hanya terjadi dari kawah pusat (puncak) tetapi juga terjadi dari lubang letusan celah dan samping. Beberapa batuan vulkanik berupa aliran lava dan endapan piroklastik yang dijumpai di lereng Gunung Semeru sebagai bukti terjadinya letusan samping pada masa pra sejarah maupun yang tercatat dalam sejarah. Letusan celah yang tercatat dalam sejarah terjadi pada tahun 1941 keluar dari celah berarah baratlaut-tenggara yang mengalir ke arah tenggara kaki Gunung Semeru sepanjang lebih kurang 7 km. Bagian atas aliran lava ini umumnya berupa lava bongkah dan bagian tengah masif memperlihatkan struktur kekar berlembar, berkomposisi andesit hipersten augit, mengandung SiO2 antara 57,55 sampai 57,72 % dan kandungan K2O 1,3 – 1,34 %, berkompisisi andesit asam. Di masa datang letusan samping atau celah di Gunung Semeru masih berpeluang terjadi karena adanya kontrol kelurusan/struktur sebagai zona lemah terutama di sektor lereng timur-tenggara.Kata Kunci: Letusan celah, aliran lava, andesit hipersten-augit, SemeruABSTRACTMount Semeru, 3676 m above sea level is an A-type active volcano in Java Island that always eruption. The present activity is strombolian and weak vulcanian eruptions with intervals varying from about 5 minutes to 15 minute. These have been the characteristic of Mt. Semeru since 1967. From the history of volcanic activity, Semeru eruption not only occurred in the summit crater but also was occurred from flank or fissure eruption vents. Some volcanic products such as lava flows and pyroclastic deposit was found at the slope of Semeru volcano as evident of occuring flank and fissure eruption during pre-historic and historical volcanic activity. Historical flank eruption has been occurred in 1941 issued from a NWSE fissure which flowed to the southeastern foot of Semeru cone about 7 km in length. The upper part of the lava is commonly blocky and in the middle part masive, often shows sheet joint structure, aughithypersthene andesite in composition that the rocks range from 57,55 to 57, 72 % SiO2, and 1,3 – 1,34 % K20 is acid andesite in composition. The probability of future flank and fissure eruptions would be controlled by lineaments or structural trends on the east-southeastern-south sector of the volcano.Keywords: Fissure eruption , lava flow, aughite-hipersthene andesite, Semeru
Kajian kondisi air tanah Jakarta tahun 2010 Bethy C. Matahelumual
Jurnal Lingkungan dan Bencana Geologi Vol 1, No 3 (2010)
Publisher : Badan Geologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2074.466 KB) | DOI: 10.34126/jlbg.v1i3.11

Abstract

SARIAir tanah termasuk sumber daya alam yang dapat diperbaharui, meskipun memerlukan waktu lama puluhan hingga ribuan tahun. Apabila air tanah tersebut telah mengalami kerusakan kuantitas dan kualitasnya, maka proses pemulihannya selain memerlukan waktu lama juga biayanya tinggi dengan teknologi yang rumit. Itupun belum tentu kembali ke kondisi semula. Laju perkembangan Kota Jakarta yang pesat pada setiap sektor kehidupan menyebabkan meningkatnya kebutuhan air bersih, diperkirakan 70% berasal dari air tanah. Untuk mengetahui kualitas dan kuantitas air tanah telah dianalisis sebanyak 70 (tujuh puluh) percontoh air tanah. Metode yang digunakan untuk mengetahui kuantitasnya adalah berdasarkan sebaran kedalaman sumur dan kedudukan muka air tanah, sedangkan kualitasnya mengacu pada Surat Keputusan Menteri Kesehatan RI Nomor 907/MENKES/SK/VII/2002 dan sistem STORET (Canter, 1977). Analisis percontoh air mengacu pada Standard Methods (APHA, 1995) dan Standard Nasional Indonesia (BAPEDAL, 1994). Hasil analisis menunjukkan bahwa kualitas air tanah di Cekungan Air Tanah Jakarta tahun 2010 ini tidak ada yang memenuhi persyaratan kualitas air minum. Muka air tanah pada sistem akuifer tak tertekan adalah antara 0,48-12,14 m, pada akuifer tertekan atas antara 8,07-54,16 m, dan pada akuifer tertekan bawah antara 0,12-58,8 m.Kata Kunci: Kualitas dan kuantitas air tanah, sistem aquiferABSTRACTGround water includes to a renewable natural resources, even though it needs ten to thousand years. When the quality and the quantity of the ground water have been damaged, it needs high cost and sophisticated technology for restoration process to return to the previous condition. Rapid growing of Jakarta City in every life sector have caused the increase in clean water demand, of which about 70% is supplied from the ground water. Seventy samples of ground water had been analized to know quality and quantity of it in 2010. The method used to know the water quantity is based on the distribution of the well depth, and position of the surface of the ground water. The quality of the ground water on the other hand refers to the Decree of Public Health Minister for RI Number 907/MENKES/VII/2002 and STORET system (Canter, 1977). Water sample analysis was based on Standard Methods (APHA, 1995) and Standar Nasional Indonesia(BAPEDAL, 1994). Analysis result shows that the quality of GroundWater Basin of Jakarta in 2010 does not meet the requirement of drinking water. Groundwater surface at unconfined aquifer ranges between 0.48- 12.14 m, at upper confined aquifer ranges between 8.07-54.16 m and at under confined aquifer ranges between 0.12-58.8 m.Keywords: ground water quality and quantity, aquifer system
Studi terpadu seismik dan deformasi di Gunung Lokon, Sulawesi Utara Nia Haerani; Hendra Gunawan; Kristianti Kristianto; Kushendratno Kushendratno; S.R. Wittiri
Jurnal Lingkungan dan Bencana Geologi Vol 1, No 3 (2010)
Publisher : Badan Geologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (5932.3 KB) | DOI: 10.34126/jlbg.v1i3.18

Abstract

SARIPengukuran deformasi dengan metoda GPS serta penyelidikan kegempaan dilakukan untuk mengetahui tingkat kegiatan vulkanik di Gunung Lokon sehubungan dengan munculnya sinar api pada dinding Kawah Tompaluan yang terjadi sejak awal 2009. Hasil pengukuran GPS menunjukkan bahwa deformasi yang terjadi tidak murni berasal dari aktivitas vulkanik, tetapi dipengaruhi juga oleh aktivitas tektonik di sekitarnya. Hasil pengukuran lokasi pusat tekanan menunjukkan kedalaman yang relatif dangkal (< 2 km). Kedalaman ini berasosiasi dengan zona aseismik yang diperoleh dengan metoda seismik.Kegempaan selama Januari-Maret 2010 didominasi oleh gempa hembusan. Dominasi gempa ini merupakan implikasi dari proses pelepasan gas akibat pemanasan batuan di dasar Kawah Tompaluan.Kata kunci: Gunung Lokon, deformasi, GPS, pusat tekanan, proses pelepasan gasABSTRACTSeismic and deformation methods using GPS was carried out to determine volcanic activity of Gunung Lokon due to glare appearance at the bottom of the Tompaluan Crater that has been occurring since early 2009. GPS measurement result showed that the deformation of Gunung Lokon is not only come from its volcanic activity but also influenced by tectonic force around the volcano. Location of pressure source has relatively shallow depth (< 2 km). This depth is associated with aseismic zone that determined by seismic method.Seismic activity during January-March 2010 was dominated by emission earthquake. This kind of earthquake possible as degassing implication due to rock heating at the bottom of Kawah Tompaluan.Keywords: Gunung Lokon, deformation, GPS, pressure source, degassing
Jejak tsunami 25 Oktober 2010 di Kepulauan Mentawai berdasarkan penelitian kebumian dan wawancara Yudhicara Yudhicara; Widjo Kongko; Velly Asvaliantina; Suranto Suranto; Sapto Nugroho; Andrian Ibrahim; Widodo S. Pranowo; Nils B. Kerpen; Knut F. Kramer; Oliver Kunst
Jurnal Lingkungan dan Bencana Geologi Vol 1, No 3 (2010)
Publisher : Badan Geologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4740.995 KB) | DOI: 10.34126/jlbg.v1i3.19

Abstract

SARITsunami Mentawai yang terjadi pada 25 Oktober 2010 adalah kategori tsunami earthquake. Ciri dari kategori ini, antara lain guncangan gempa bumi terasa lemah tetapi berlangsung lama (~ 3 menit) dan menghasilkan tsunami cukup besar. Parameter tsunami yang terukur di lapangan, diketahui bahwa ketinggian run up maksimum 12,4 m di Pulau Sibigou, jarak genangan maksimum 450 m di Dusun Malakopa, kedalaman batimetri dekat pantai 2-15 m, dan ketebalan endapan pasir tsunami mencapai 12cm di Teluk Makaroni. Berdasarkan keterangan dari saksi mata, sebelum tsunami berlangsung indikasinya adalah suara gemuruh dari arah laut dan perilaku burung camar yang mengeluarkan suara yang gaduh. Gelombang tsunami tiba di pantai 5-10 menit setelah guncangan gempa bumi sebanyak 3 sampai 4 kali gelombang. Gelombang yang kedua dianggap paling tinggi.Kata kunci: gempa bumi, Tsunami Mentawai, ketinggian run up, jarak genanganABSRACTTsunami Mentawai of 25 October 2010 is take in to tsunami earthquake catagory, which has weak shaking and slow duration (~ 3 minutes), but produce big tsunami. Tsunami parameter measurement obtained the maximum run up of 12.4 meters at Sibigou Island, maximum inundation of 450 meters at Malakopa Village, near coast bathymetry of 2-15 meters and tsunami sand deposits up to 12 cm at Makaroni Bay. According to the eyewitnesses, there are some precursors such as roaring sound from the sea and bird noisy sounds heard before the tsunami came. Tsunami arrived 5-10 minutes after earthquake, come inland about 3 to 4 times and the second wave was the highest.Keywords: earthquake, Tsunami Mentawai, run up, inundation
The behaviour of fluorine, chlorine, and sulphur in the magma of Merapi Vulcano Central Java – Indonesia E. Kadarsetia; J. Hirabayashi; T. Ohba; K. Nogami
Jurnal Lingkungan dan Bencana Geologi Vol 1, No 3 (2010)
Publisher : Badan Geologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2023.705 KB) | DOI: 10.34126/jlbg.v1i3.20

Abstract

ABSTRACTMerapi volcano, located at Central Java - Indonesia, is one of the world’s most active volcano. In order to gain better understanding on volcanism and magmatism of this calc-alkaline volcano, various researches have been carried out. Some valuable information concerning volcanism of Merapi volcano can be indirectly obtained through the investigation of fluorine, chlorine and sulphur behavior in the magma. To accomplish this study, sixteen rock samples have been taken from the summit. Petrographic and chemical analysis of the rocks had been carried out. Major elements composition, analyzed by X-ray fluoresence method, shown that during the last 100 years chemical composition of magma have not been significantly changed, about 55 wt% of SiO2. Chemical composition of individual minerals, determined by EPMA, suggested a constant composition the magma. Bulk compositions of fluorine and chlorine were determined by wet analytical methods, Ion-selective Electrode “by Trymethylsilylating distillation” method and spectrophotometer determination by Mercury Thiocyanate method respectively. On the other hand, sulphur was determined by a fluorescence instrumental method. The concentration of fluorine, chlorine and sulphur are 210 - 390 ppm, 60 - 540 ppm (water insoluble) and 17 - 82 ppm respectively. The relationship between Cl with Si02 and CaO could be observed. F in agreement with CaO, and in general correlate with the volume of hydrous minerals. Most of F/Cl atomic ratio of Merapi rocks >1, and decrease with increasing Si02, or F is more reactive than Cl to the magma, especially in the earlier stage of crystallization. The equal size of fluorine and hydroxyl ions permits fluorine to substitute easily for OH- in hydrous minerals or melt, Cl may be expelled during crystallization when in the fluorine present. In more residual magma the larger ionic radius of chlorine and its renown ability to form complex molecules should lead to greater concentration of chlorine than fluorine; these facts as well as the water solubility of chlorine compounds, that have been advanced as an explanation for the high Cl/F ratio obtained in volcanic gases. Sulphur has parallel correlation with FeO. It is shown that sulphur was more partioned into Fe rich magma, whereas Fe-S mineral is more likely. Therefore, the low sulphur content of Merapi lava might be as the characteristics of island arc volcanism.Keywords: Composition magma of Merapi, chlorine, fluorine, sulphur

Page 1 of 1 | Total Record : 5