cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota salatiga,
Jawa tengah
INDONESIA
Indonesian Journal of Physics and Nuclear Applications
ISSN : 2549046X     EISSN : -     DOI : -
Core Subject : Science, Social,
Indonesian Journal of Physics and Nuclear Applications is an international research journal, which publishes top level work from all areas of physics and nuclear applications including health, industry, energy, agriculture, etc. It is inisiated by results on research and development of Indonesian Boron Neutron Capture Cancer Therapy (BNCT) Consortium. Researchers and scientists are encouraged to contribute article based on recent research. It aims to preservation of nuclear knowledge; provide a learned reference in the field; and establish channel of communication among academic and research expert, policy makers and executive in industry, commerce and investment institution.
Arjuna Subject : -
Articles 7 Documents
Search results for , issue "Vol 1 No 2 (2016)" : 7 Documents clear
Dosimetry of in vitro and in vivo Trials in Thermal Column Kartini Reactor for Boron Neutron Capture Therapy (BNCT) facility by using MCNPX Simulator Code Adrian Tesalonika; Andang Widi Harto; Yohannes Sardjono; Isman Mulyadi Triatmoko
Indonesian Journal of Physics and Nuclear Applications Vol 1 No 2 (2016)
Publisher : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (386.908 KB) | DOI: 10.24246/ijpna.v1i2.63-72

Abstract

A dosimetry study of in vitro and in vivo trials system in thermal column of Kartini Reactor for Boron Neutron Capture Therapy (BNCT) facility has been conducted by using the Monte Carlo N-Particle Extended (MCNPX) software. Source of neutron originated from the 100 kW reactor which has been modified by the previous researcher. Models have been made by using simple geometries to represent tissues. Models of in vitro have been made by 4 spheres each has 1 cm diameter to represent tumour, whereas in vivo by 4 cylinders each has 6 cm length, 3 cm diameter, and breast soft tissue material with 1 cm sphere each located in the center of the cylinders to represent models of mouse with tumour. An increase in value of the boron concentration will increase the value of dose rate as well, then the exposure time should be shorter. The exposure times (in minutes) of in vitro trials for 20, 25, 30, 50, 75, 100, 125, and 150 μg boron/g tissues are 117.77, 117.77, 117.07, 115.69, 114.02, 112.39, 110.80, and 109.27. Whereas the exposure times of in vivo trials are 163.58, 162.78, 161.98, 158.88, 155.16, 151.61, 148.22, dan 144.98. In vitro trials have greater values of dose rate so that in vitro trials have shorter exposure time.
Boron Neutron Capture Therapy (BNCT) using Compact Neutron generator Anggraeni Dwi Susilowati; Kusminarto Kusminarto; Yohannes Sardjono
Indonesian Journal of Physics and Nuclear Applications Vol 1 No 2 (2016)
Publisher : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (879.192 KB) | DOI: 10.24246/ijpna.v1i2.73-80

Abstract

Boron Neutron Capture Therapy (BNCT) must be appropriate with five criteria from IAEA. These criteria in order to prevent neutron beam output harm the patient. It can be by using Collimator of neutron source Compact Neutron Generator (CNG) and Monte Carlo simulation method with N particles 5 .CNG is developed by deuteriumtritium reaction (DT) and deuterium-deuterium (DD) reaction. The manufacture result of the collimator is obtained epithermal neutron flux value of 1.69e-9 n/cm^2s  for D-T reaction and 8e6 n/cm^2s for D-D reaction, ratio of epithermal and thermal is 1.95e-13 Gy cm^2/n for D-T reaction and for D-D reaction, ratio of fast neutron component is 1.69e-13 Gy cm^2/n for D-T reaction and for D-D reaction, ratio of gamma component is 1.18e-13 Gy cm^2/nfor D-T reaction and for D-D reaction. The Latest reaction is current ratio 0.649 for D-T reaction and 0.46 for D-D reaction.
The Application of Nuclear Medicine Giner Maslebu; Suryasatriya Trihandaru
Indonesian Journal of Physics and Nuclear Applications Vol 1 No 2 (2016)
Publisher : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (181.266 KB) | DOI: 10.24246/ijpna.v1i2.81-84

Abstract

Currently, the practice of nuclear medicine in modern countries comprises a large number of procedures. It is applied to study function of organs/body systems, to visualize, to characterize, and to quantify the functional state of lesions and for targeted radionuclide therapy. This overview presents all kinds of application in nuclear medicine services. Instrumentation and radioactive/radiolabeled substances are the basic components for application. Biotechnology contributes to the development and production of biomolecules used in radiopharmaceuticals. As a diagnostic modality, imaging depicts radioactivity distribution as a function of time. Hybrid imaging provides more precise localization and definition of le-sions as well as molecular imaging cross validation. Counting tests study invivoorgan functions externally or assess analytes in the biologic samples. Radiopharmaceutical therapy can be applied directly into the lesion or targeted systemically. Nanotechnology facilitates targeting and opens the development of bimodal techniques. In addition, neutron application contributes to the advancement of nuclear medicine services, such as neutron activation analysis, neutron teletherapy and neutron capture therapy.
Identification of Heavy Metal in Palm Oil Empty Fruit Bunch Compost, Mulch from Palm oil Waste and Its Effect on Chili (Capsicum annuum L.) Mercy Bientri Yunindanova; Herdhata Agusta; Dwi Asmono
Indonesian Journal of Physics and Nuclear Applications Vol 1 No 2 (2016)
Publisher : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (419.797 KB) | DOI: 10.24246/ijpna.v1i2.85-98

Abstract

This study aimed to investigate the effect of compost from oil palm empty fruit bunches with different ages, mulching oil palm waste, the levels of heavy metals in compost and its influence on the growth and yield of chili. Composting was assisted by the starter (PromiTM) with a dose of 0.5 kg per ton of chopped bunches. Composting treatment distinguished by the composting time namely 4, 6, 8 and 10 weeks. Mulch treatment consisted of shell, fiber and empty fruit bunch chopped. The empty fruit bunch compost had the potential to decrease the soil acidity because the pH of 7.89- 8.66. The EFBs compost contained Boron of 7.7-10.7 ppm, 12-24.8 ppm of Cuprum, 0.05 to 0.24 % of Fe, 26.5-89.7 ppm of Mn, and 9.1-10.8 ppm of Na. This compost contained heavy metal Cd and Hg. Cd was detected in amount of 0.08 to 0.25 ppm. Hg was detected in amount of 12.9-19.5 ppm. Meanwhile, Pb and As were not found. Cd did not exceed the threshold. On the other hand, Hg was detected exceeding the threshold but did not affect the growth and yield of chili. Organic mulch from palm oil wastes did not significantly affect on the chili yield. Shell mulch had a negative influence on the growth and yield of chili.
Preparation of Dosimetry of Boron Neutron Capture Therapy (BNCT) for In vivo Test Planning system using Monte Carlo N-Particle Extended (MCNP-X) Software Muhammad Ilma Muslih Arrozaqi; Kusminarto Kusminarto; Yohannes Sardjono
Indonesian Journal of Physics and Nuclear Applications Vol 1 No 2 (2016)
Publisher : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (676.344 KB) | DOI: 10.24246/ijpna.v1i2.99-107

Abstract

Cancer is a disease with second largest patients in the world.  In Indonesia, the number of radiotherapy facility in Indonesia is less than 30 units and every patients needs more than single exposure, so that it result a long waiting list of treatment up to one year. Now, a new treatment of cancer is developed. It is Boron Neutron Capture Therapy that using capture reaction of neutron by Boron-10. Before this method is applied to patient, it requires some testing which is one of them is in vivo test. This research has been conducting to prepare the in vivo test, especially in dosimetry. Preparation of dosimetry includes collimator design and mouse phantom model. The optimum specification of the collimator is consist of Nickel collimator wall with 2 cm of thickness, Aluminum moderator with 10 cm of thickness and lead gamma shield with 3.5 of thickness. This design result in 1.18 x 108 n/cm2s of epithermal and thermal neutron flux, 2,24 x 10-11 Gy cm2/s of fast neutron component dose, 1.35 x 10-12 Gy cm2/s of gamma dose component, and 7.18 x 10-1 of neutron current and flux ratio. Mouse phantom model is built by two basic kind of geometry, they are Ellipsoid and Elliptical Tory. Both of basic geometry can be used to make all important organs of mouse phantom for dosimetry purpose.
Quality Management System Program of in Vitro/in Vivo Test Facility of Boron Neutron Capture Therapy at Kartini Research Reactor Widarto Widarto; Isman Mulyadi Tri Atmoko; Gede Sutresna Wijaya
Indonesian Journal of Physics and Nuclear Applications Vol 1 No 2 (2016)
Publisher : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (644.593 KB) | DOI: 10.24246/ijpna.v1i2.108-115

Abstract

The quality manajement system program of in vitro / in vivo test facility of  Boron Neutron Capture Therapy (BNCT) methode as quality assurance requirement for utilization of radial pearcing beamport of Kartini research have been done.  Identification and management of technical specification and parameters meassurement of to the radial piercing beamport have been determined for preparing in vitro / in vivo test facility. The parameters are epithermal neutron flux is  9,8243E+05  n cm-2 s-1and  thermal neutron flux is 3,0691E+06 n cm-2 s-1, radiation shielding of parafin,  dimension and size  of piercing radial and instrumentatin and control system for automatic transfer of in vitro / in vivo samplels have been documented. Management system of the documents for fullfil  basic guidance to perform working job of in vitro / in vivo at the piercing radial beamport of Kartini Research Reactor in order purpose utilization of the reactor  for safety worker of the radiation area, society  and invironment beeing safely
Radionuclide Release Prediction in Water and Soil at Demonstration Plant of Near Surface Disposal for Radioactive Waste Pandu Dewanto; Setyo Sarwanto Moersidik; Sucipta Sucipta
Indonesian Journal of Physics and Nuclear Applications Vol 1 No 2 (2016)
Publisher : Fakultas Sains dan Matematika Universitas Kristen Satya Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (703.843 KB) | DOI: 10.24246/ijpna.v1i2.116-122

Abstract

Near Surface Disposal (NSD) for Radioactive Waste that should be developed due to increment of the low level radioactive waste, need to be analyzed and evaluated related to the radiological impact of the environment. A research method applied is done by modeling the distribution of radionuclide releases process. Analysis related with the releases of radionuclide in water and soil is using PRESTO (Prediction of Radiological Effects Due to Shallow Trench Operations). The application scenarios selected in this safety assessment is the migrations of Co-60 and Cs-137 scenario through the shallow groundwater flow pattern in the NSD site. The SigmaPlot software is also used to determine the concentration equation in well water and river water. The final results showed the concentration of radionuclide in wells and streams below the provision. Radionuclide activity concentrations in well ranged from 10-10Bq/m3 to 100Bq/m3 and in the river ranged from 10-15Bq / m3 to 10-1Bq / m3. The impact of radioactive waste of radionuclide Co-60 and Cs-137 will decrease to the background radiation level at a distance less than 10m and penetrate into the saturated layer up to 4m. In this study, an equation have been obtained that can predict radionuclide concentration patterns based on the distance and the depth of the ground surface against to the facility operation time.

Page 1 of 1 | Total Record : 7