cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota malang,
Jawa timur
INDONESIA
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
ISSN : 25032259     EISSN : 25032267     DOI : -
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control was published by Universitas Muhammadiyah Malang. journal is open access journal in the field of Informatics and Electrical Engineering. This journal is available for researchers who want to improve their knowledge in those particular areas and intended to spread the knowledge as the result of studies. KINETIK journal is a scientific research journal for Informatics and Electrical Engineering. It is open for anyone who desire to develop knowledge based on qualified research in any field. Submitted papers are evaluated by anonymous referees by double-blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully within 4 - 8 weeks. The research article submitted to this online journal will be peer-reviewed at least 2 (two) reviewers. The accepted research articles will be available online following the journal peer-reviewing process.
Arjuna Subject : -
Articles 11 Documents
Search results for , issue "Vol. 5, No. 1, February 2020" : 11 Documents clear
Multi-scale Entropy and Multiclass Fisher’s Linear Discriminant for Emotion Recognition Based on Multimodal Signal Lutfi Hakim; Sepyan Purnama Kristanto; Alfi Zuhriya Khoirunnisaa; Adhi Dharma Wibawa
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 5, No. 1, February 2020
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (685.165 KB) | DOI: 10.22219/kinetik.v5i1.896

Abstract

Emotion recognition using physiological signals has been a special topic frequently discussed by researchers and practitioners in the past decade. However, the use of SpO2 and Pulse rate signals for emotion recognitionisvery limited and the results still showed low accuracy. It is due to the low complexity of SpO2 and Pulse rate signals characteristics. Therefore, this study proposes a Multiscale Entropy and Multiclass Fisher’s Linear Discriminant Analysis for feature extraction and dimensional reduction of these physiological signals for improving emotion recognition accuracy in elders.  In this study, the dimensional reduction process was grouped into three experimental schemes, namely a dimensional reduction using only SpO2 signals, pulse rate signals, and multimodal signals (a combination feature vectors of SpO2 and Pulse rate signals). The three schemes were then classified into three emotion classes (happy, sad, and angry emotions) using Support Vector Machine and Linear Discriminant Analysis Methods. The results showed that Support Vector Machine with the third scheme achieved optimal performance with an accuracy score of 95.24%. This result showed a significant increase of more than 22%from the previous works.

Page 2 of 2 | Total Record : 11