cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 14 Documents
Search results for , issue "Vol 10, No 7 (2024): July" : 14 Documents clear
The Effect of Oil Contaminated on Collapse Pattern in Gypseous Soil Using Particle Image Velocimetry and Simulation Hala Mahmood Jawad; Zuhair Kadhim Jahanger
Civil Engineering Journal Vol 10, No 7 (2024): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-07-016

Abstract

Gypseous soil covers approximately 30% of Iraqi lands and is widely used in geotechnical and construction engineering as it is. The demand for residential complexes has increased, so one of the significant challenges in studying gypsum soil due to its unique behavior is understanding its interaction with foundations, such as strip and square footing. This is because there is a lack of experiments that provide total displacement diagrams or failure envelopes, which are well-considered for non-problematic soil. The aim is to address a comprehensive understanding of the micromechanical properties of dry, saturated, and treated gypseous sandy soils and to analyze the interaction of strip base with this type of soil using particle image velocimetry (PIV) measurement and Plaxis 3D simulation. The results showed that high-resolution digital cameras captured soil deformation using PIV, displacement fields, and velocity vectors were generated, which helped identify different sand movement zones. Further, PIV showed punching and general shear failure in uncontaminated and soaked contaminated gypsum soils, respectively. Moreover, the Plaxis results corresponded well with the PIV, as material behavior models are essentially simplified representations of the actual behavior of footing and soil. Understanding soil deformation behavior is crucial for accurate engineering calculations and designs, making these findings valuable for geotechnical and construction engineering applications. Doi: 10.28991/CEJ-2024-010-07-016 Full Text: PDF
Enhancing the Properties of Steel Fiber Self-Compacting NaOH-Based Geopolymer Concrete with the Addition of Metakaolin Samy Elbialy; Ahmed A. El-Latief; Hebah M. Al-Jabali; Hebatallah A. Elsayed; Shymaa M. M. Shawky
Civil Engineering Journal Vol 10, No 7 (2024): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-07-011

Abstract

There is a demand for innovative construction materials that offer enhanced mechanical characteristics while also being cost-effective and environmentally friendly. This paper examines the fresh properties and mechanical properties of geopolymerized self-compacting concrete (SCC) reinforced with steel fibers, containing 0–100% metakaolin (MK) by mass, as an eco-friendly substitute for Portland cement. SCC combinations included one or more waste cementitious materials (WCMs), such as metakaolin (MK), NaOH as an alkaline activity, and double-hook end steel fibers. For every NaOH geopolymer SCC blend, the mechanical characteristics (compressive strength, splitting tensile strength, flexural strength), as well as the new properties (lump flow, V-Funnel, L-box test), were read up. The findings indicate that combining metakaolin and steel fibers reduces the flowability of NaOH-based geopolymer SCC. On the other hand, incorporating MK and steel fibers enhances the compressive and flexural strength of NaOH-based geopolymer SCC with 25% metakaolin and 0.3% steel fiber. In contrast to the fiber-reinforced NaOH-based geopolymer SCC samples, which could transfer a sizable load even when the crack mouth opening deflection rose at flexural strength, the fiber-free SCC samples showed a brittle and abrupt fracture. The findings showed that the addition of NaOH as an alkaline activator, MK, and steel fiber had a negative impact on the fresh state properties; however, their combined use greatly enhanced the bond strength and flexural performance of the NaOH geopolymer SCC specimens. Doi: 10.28991/CEJ-2024-010-07-011 Full Text: PDF
Influence of Temperature on the Viscoelastic Behavior and Durability of Flexible Pavements Omar Ben Charhi; Khadija Baba
Civil Engineering Journal Vol 10, No 7 (2024): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-07-06

Abstract

This study meticulously examines the impact of temperature variations on the viscoelastic characteristics of flexible pavements composed of mineral aggregates and bituminous binders. The primary objective is to understand how temperature fluctuations affect the structure and durability of these pavements, designed to withstand traffic loads while absorbing stresses induced by weather conditions. The methodology involves a thorough analysis of a range of temperatures from T1 to T4, assessing their effects on road rutting and the longevity of pavement infrastructure. Through a detailed analytical approach, the research investigates the viscoelastic behavior of bituminous mixes, which display viscous and elastic properties that change with temperature. The findings reveal significant correlations between temperature variations and the performance of flexible pavements, offering insights into their structural resilience and durability under different climatic conditions. This research introduces a novel approach to managing flexible pavement infrastructure by enhancing our understanding of the temperature-induced viscoelastic response. The improvement lies in the precise quantification of temperature impacts, which can inform better maintenance and design strategies for flexible pavements. Ultimately, this leads to more resilient and long-lasting road surfaces, addressing the critical need for durable infrastructure in changing weather patterns. Doi: 10.28991/CEJ-2024-010-07-06 Full Text: PDF
Leak Detection in Urban Hydraulic Systems Using the K-BiLSTM-Monte Carlo Dropout Model Edgar Orlando Ladino-Moreno; César Augusto García-Ubaque
Civil Engineering Journal Vol 10, No 7 (2024): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-07-01

Abstract

Utility companies lose approximately 35 liters of water for every 100 produced due to incorrect, illegal connections and the poor condition of pipes. This study develops an intelligent model to detect leaks using the Kalman filter, BiLSTM neural networks, and the Monte Carlo Dropout algorithm. Using data from the Empresa de Acueductos y Alcantarillados de Bogotá (EAAB), Colombia, autocorrelation analysis, PCA, cluster analysis, ADF and Durbin-Watson tests, Hurst exponent, spectral analysis, and wavelet transform were performed. Then, Kalman filtering techniques were applied, and a BiLSTM architecture controlled with Monte Carlo dropout was implemented. The results showed an accuracy of 87.48% in training and 80.48% in validation. Temporal analysis revealed a stationary behavior in the flow series, and the decrease in spectral intensity around 0.25 Hz was related to pressure perturbations caused by leaks. A detailed evaluation of pressure and flow signals identified leak patterns with high precision, demonstrating the effectiveness of the wavelet spectrogram in detecting energy disturbances. The novelty of the study lies in the integration of advanced artificial intelligence and combinatorial optimization techniques to improve water resource management, allowing early and accurate detection of leaks, significantly improving compared to traditional methods. Doi: 10.28991/CEJ-2024-010-07-01 Full Text: PDF
Effective Stiffness and Damping Analysis of Steel Damper to Lateral Cyclic Loading Bastian A. Ampangallo; Herman Parung; Rita Irmawaty; Arwin Amiruddin
Civil Engineering Journal Vol 10, No 7 (2024): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-07-017

Abstract

Steel dampers are components used in building structures to reduce vibration and energy generated by dynamic loads such as earthquakes. Several factors affect the effectiveness of steel dampers in reducing energy, including the cross-sectional area, mass distribution, cross-sectional geometry, and material stiffness. The cross-sectional geometry or shape of the steel damper can affect how energy is absorbed and dissipated in the structural system. Cross sections with different geometric variations can have different mechanical responses to dynamic loads. This study aims to analyze which type of steel damper is effective in terms of stiffness and damping capacity against lateral cyclic loads. The steel damper cross-sectional variations used are slit steel dampers (SSDs), tapered steel dampers (TSDs), and oval steel dampers (OSDs). Cyclic testing of the dampers used displacement control with the same target deviation for all three damper types. The results showed that the stress and strain distributions of the oval steel damper were more even than those of the other two models. The variations in the energy dissipation capacities of the three cross-section variations are relatively the same. However, the slit steel damper type has the best stiffness compared to the other two types. This research is ultimately expected to influence the science of the structure of a building in preventing and anticipating earthquakes or other disasters. Doi: 10.28991/CEJ-2024-010-07-017 Full Text: PDF
Artificial Intelligence for Application in Water Engineering: The Use of ANN to Determine Water Quality Index in Rivers Rabah Ismail; Adnan Rawashdeh; Hashem Al-Mattarneh; Randa Hatamleh; Dua’a B. Telfah; Aiman Jaradat
Civil Engineering Journal Vol 10, No 7 (2024): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-07-012

Abstract

To improve water quality, total daily loads must be established, and this requires determining the quality of the water in rivers, storage tanks, ponds, and coastal areas. Current methods to evaluate water quality involve the collection of water samples for subsequent laboratory analysis. Although these technologies offer precise measurements for a specific location and time, they are expensive, time-consuming, and do not provide the continuous, temporal, or spatial conditions of water quality that are required for managing, assessing, and monitoring water quality. In order to calculate the water quality, the water quality index is modeled using artificial neural network models that incorporate feedforward neural network backpropagation neural networks and radial neural networks. The water quality index of Malaysia’s Klang River was determined by training the artificial network using six major sub-quality parameters. Compared to the current method, the artificial neural network simplifies and expedites the computation of the water quality index. The artificial neural network method could provide a significant saving in terms of money and time while offering a robust assessment of water quality. The proposed method could also be used as an early warning system for pollution of water bodies. The best artificial neural network was the feedforward neural network with one hidden layer containing 5 neurons. Furthermore, conventional approaches for calculating the water quality index rely on empirical equations, often introducing a high degree of approximation and uncertainty into the results. Moreover, these equations cannot be applied when some parameters are not measured. In contrast, the artificial neural network methods and technique offer an efficient and straightforward process for estimating and creating prediction models for water quality index. Doi: 10.28991/CEJ-2024-010-07-012 Full Text: PDF
Assessing Multifaceted Effects of Speed Humps and Bumps: Travel Time, Safety, and Environmental Considerations Sayed A. Shwaly; Amal El-Ayaat; Reem Osman
Civil Engineering Journal Vol 10, No 7 (2024): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-07-07

Abstract

This study focuses on investigating the significant impacts of speed breakers on various parameters, including travel time delays, vehicle speeds, fuel consumption, pavement maintenance costs, and vehicular exhaust emissions. Field data was collected and analyzed to assess the effects of different types of traffic calming measures on these parameters. The findings provide valuable insights into the implications of speed breakers on road safety, environmental pollution, and overall road infrastructure management. The results reveal that the implementation of speed humps, speed bumps, and triple bumps effectively slows down vehicles, as evidenced by considerable reductions in the 85th percentile speeds. The reduction percentages were 41.65% for speed humps, 73.52% for speed bumps, and 86.27% for triple bumps. This indicates the effectiveness of these traffic calming measures in improving road safety by reducing vehicle speeds. However, the presence of speed breakers also leads to increased travel time delays. On average, traversing stretches with speed humps, speed bumps, and triple bumps resulted in delays of 9.31, 16.42, and 29.51 seconds, respectively. While the individual delay times may appear relatively short, the cumulative effect of multiple speed obstacles along a road needs to be considered. Another significant impact observed is the increased fuel consumption associated with speed breakers. The study found that for every 100 km of travel, motorcycles and passenger cars consumed approximately 12.07 km and 27.37 km of additional fuel, respectively, when the density of speed breakers was 1.33/km. This translates to a fuel consumption increase of 13.73% for motorcycles and 37.74% for passenger cars. Furthermore, the presence of speed humps was found to contribute to pavement deterioration, as indicated by decreased Pavement Condition Index (PCI) values. The study also revealed that sections with speed humps incurred significantly higher maintenance costs compared to sections without speed humps. The increase in maintenance cost ranged from 100 to 264% across different road sections, with higher traffic volumes leading to greater cost escalation. Additionally, the study confirms that lower vehicle speeds, particularly between 0-15 km/hr, are associated with higher emissions of pollutants, including carbon monoxide (CO) and other pollutants. This highlights the environmental implications of speed breakers and their contribution to urban air pollution. Doi: 10.28991/CEJ-2024-010-07-07 Full Text: PDF
Empirical Model of Unconsolidated Tephra Erosion: Verification and Application on Micro Catchment F. Tata Yunita; Indratmo Soekarno; Joko Nugroho; Untung B. Santosa
Civil Engineering Journal Vol 10, No 7 (2024): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-07-02

Abstract

Erosion is an important process that shapes the earth's surface. Given the complexity of the process, efforts to understand it are essential. Over the last 50 years, numerous models of soil particle erosion by surface runoff emerged, some of which share similar forms and parameters. The differences lie in the coefficient values of the parameters, attributed to the characteristics of the soil material such as texture, structure, and organic matter content. However, these erosion models tend to underpredict in the case of new volcanic deposit erosion. The erosion model for unconsolidated tephra, proposed by Yunita, was developed through laboratory experiments using volcanic material from Merapi Volcano, Indonesia. Nevertheless, the model has not been implemented for other cases. Therefore, this study aims to verify the erosion model for volcanic material in other cases, explore the possibility of broader implementation, identify the factors that influence its accuracy, and determine the model’s limitations. To verify the model’s potential for broader application, we applied it to micro-scale catchments in St. Hellens (USA), Sakurajima (Japan), and a laboratory scale plot in Merapi (Indonesia). The verification yielded satisfactory results for all three cases, especially for new tephra deposits. In the case of St. Helens, the extrapolation of model coefficients was proven to still be applicable even for thicker tephra layers. However, the erosion prediction was overestimated for tephra layer deposits older than 1 year, as the erosion rate decreases over time due to the compaction and stabilization of the tephra layer. In the Sakurajima, the model was also suitable for predicting long-term erosion amounts (daily and monthly). Meanwhile, in Merapi, the model provided accurate predictions for slopes of 20º and 25º but was less accurate for 30º slopes, where the measured erosion was due to both erosion and slope failure. These verification results demonstrate the potential of applying the empirical erosion model to micro catchments with relatively homogenous slopes and tephra properties. The sensitivity test revealed that slope, runoff, rainfall intensity, and volcanic ash thickness are strongly influence the erosion rate. This study also simplified the volcanic ash erosion model as a function of slope (S0), runoff (q), and rainfall (i) by assuming the value of (1-τc/τ0) is equal to 1. Further study using GIS tools is required for its application on several catchments with heterogeneous characteristics. Doi: 10.28991/CEJ-2024-010-07-02 Full Text: PDF
Groundwater Quality Assessment in the Middle-Upper Pleistocene Aquifer Le Diem Kieu; Pham Quoc Nguyen
Civil Engineering Journal Vol 10, No 7 (2024): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-07-018

Abstract

The study was conducted to assess groundwater quality and identify the main pollution sources of groundwater in Hau Giang province, Vietnam. Groundwater samples were collected at five locations (GW1-GW5) at qp2-3 aquifer in May and October 2022. Principal component analysis (PCA), cluster analysis (CA), water pollution index (WPI), and groundwater quality index (GWQI) were applied in the study. The results revealed that the groundwater quality was influenced by TDS, NH4+-N, permanganate index, and Fe. On the basis of WPI, GW2 and GW3 had the lowest water quality, exceeding a value of 1. The results of GWQI showed that groundwater quality was divided into three categories (excellent, poor, and unsuitable for drinking) in May and four categories (good, poor, very poor, and unsuitable for drinking) in October. The study also revealed seasonal variations in groundwater quality, particularly in GW5 (Vi Thuy district, Hau Giang, Vietnam). The CA results formed four water quality groups in both periods based on the similarity of groundwater parameters. PCA results presented that the three PCs explained 79.55% of the variation in groundwater quality. Three potential sources of pollution are derived from the discharge of wastewater (domestic, industrial, and agricultural), landfilling, and seawater intrusion. Doi: 10.28991/CEJ-2024-010-07-018 Full Text: PDF
Evaluating the Efficiency of Alkaline Activator with Silica-Rich Wastes in Stabilizing Cadmium-Contaminated Soil Khitam Saeed; Sahar Al-Khyat; Zuhair Abd Hacheem; Sabah H. Fartosy
Civil Engineering Journal Vol 10, No 7 (2024): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-07-04

Abstract

Contaminant soil remediation has potential engineering applications with various stabilization techniques addressing heavy metal contamination. Conventional soil stabilizers, however, have an environmental impact, promoting international research into environmentally friendly alternatives. Using waste byproducts to produce geopolymer binders as new green cementitious materials can provide an environmentally friendly and effective option for soil improvement. Silica-rich wastes have been advanced as a sustainable option for soil stabilization. The effectiveness of alkaline-activated silica-rich wastes in stabilizing cadmium-contaminated soil and its potential engineering utilization remain of profound significance, demanding sustained and rigorous research investigation. Cadmium was immobilized in silty clay soil by rich silica waste products—fly ash, silica fume, and rice husk ash—at various percentages with 4.5 and 6.5-molar alkaline activators. Unconfined compressive strength tests assessed soil behavior, while Toxicity Characteristic Leaching Procedure (TCLP), pH tests, X-ray diffraction, and scanning electron microscope analyses explained cadmium immobilization mechanisms. The experimental results revealed that alkali-activated silica-rich wastes enhanced strength and cementitious properties and reduced cadmium leaching in the contaminated silty clay. The Finite Element Method was also employed to analyze the bearing capacity of the stabilized contaminated soil. The numerical results support the experimental results and confirm increased soil strength and reduced compressibility, endorsing the efficacy of the stabilization techniques and environmental benefits. Doi: 10.28991/CEJ-2024-010-07-04 Full Text: PDF

Page 1 of 2 | Total Record : 14


Filter by Year

2024 2024


Filter By Issues
All Issue Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol. 10 No. 7 (2024): July Vol 10, No 7 (2024): July Vol 10, No 6 (2024): June Vol 10, No 5 (2024): May Vol. 10 No. 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue