cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 21 Documents
Search results for , issue "Vol 5, No 4 (2019): April" : 21 Documents clear
Flexural Behavior of Unbounded Pre-stressed Beams Modified With Carbon Nanotubes under Elevated Temperature Amr H. Badawy; M. S. El-Feky; Ahmed Hassan; Hala El-kady; L. M. Abd-El Hafez
Civil Engineering Journal Vol 5, No 4 (2019): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1059.855 KB) | DOI: 10.28991/cej-2019-03091294

Abstract

Since fire is one of the common reasons for rehabilitation and reconstructions during the service life of a building, it is necessary to assess the elements structural and technical conditions. The objective of the present paper is to investigate the flexural behavior in bending for unbounded full pre-stressed beams with and without the incorporation of carbon nanotubes (CNTs) under the exposure to elevated temperature in comparison with non-pre-stressed beams. The test Method was divided into two major stages where the principal stage’s goal was considering the flexural behavior of fully and non-prestressed concrete beams containing CNT of 0 and 0.04% as cement replacement at ambient temperature. In the second stage, a typical group of beams was prepared and the flexural behavior was explored under the exposure to temperature of 400ºC, for 120 minutes. The major findings upon monitoring the failure mechanisms, ultimate load capacity, and deflection at critical sections, was that the CNT had shown a significant impact on the behavior and extreme resistance of fully and non-prestressed normal concrete. With CNT beams also exhibited higher imperviousness to high-temperature than that of the normal beams. Finally the significant Improvement was that the ultimate load of the non-pre-stressed beam with the presence of the CNT at the lower 50mm in the tension zone showed a gain of 13%, while the ultimate load of the fully pre-stressed beam with the presence of the CNT at the lower 50mm in the tension zone showed a gain of 21% as compared to the same beam without CNT, respectively. For the non-pre-stressed beams, the load capacity of the beam with CNT after exposure had a similar load capacity as the beam without CNT before exposure to high temperature.
Effects of Near-fault Strong Ground Motions on Probabilistic Structural Seismic-induced Damages Mirzaie Aminian, Farzad; Khojastehfar, Ehsan; Ghanbari, Hamid
Civil Engineering Journal Vol 5, No 4 (2019): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (900.783 KB) | DOI: 10.28991/cej-2019-03091289

Abstract

Seismic fragility curves measure induced levels of structural damage against strong ground motions of earthquakes, probabilistically. These curves play an important role in seismic performance assessment, seismic risk analysis and making rational decisions regarding seismic risk management of structures. It has been demonstrated that the calculated fragility curves of structures are changed while the structures are excited by near-field strong ground motions in comparison with far-field ones. The objective of this paper is to evaluate the extents of modification for various performance levels and variety of structural heights. To achieve this goal, Incremental Dynamic Analysis (IDA) method is applied to calculate seismic fragility curves. To investigate the effects of earthquake characteristics, two categories of strong ground motions are assumed through IDA method, i.e. near and far-field sets. To study the extent of modification for various heights of structures, 4 – 6 and 10 stories moment-resisting concrete frames are considered as case studies.  Furthermore, to study the importance of involving near-field strong ground motions in seismic performance assessment of structures, the damage levels are considered as the renowned structural performance levels (i.e. Immediate Occupancy, Life Safety, Collapse Prevention and Sidesway Collapse). Achieved results show that the fragility curve of low-rise frame (i.e. 4-story case study) for IO limit state presents more probability of damage applying near-fault sets in comparison with far-fault set. Investigating fragility curves of the other performance levels (i.e. LS, CP and Collapse) and the higher frames, a straightforward conclusion, regarding probability of damage. To achieve the rational results for the higher frames, mean annual frequency of exceedance (MAFE) and probability of exceeding limit states in 50 years are calculated. MAFE is defined as the integration of structural fragility curve over seismic hazard curve. According to the achieved results for 6-story frame, if the structure is excited by near-field strong ground motions the probability of exceedance for LS, CP and collapse limit states in 50 years will be increased up to 11%, 2.4%, 0.7% and 0.4% respectively, comparing with the calculated probabilities while far-field strong ground motions are applied. On the other hand, while the 10-story case study is excited by near-field strong ground motions, the exceedance probability values for mentioned limit states decreases up to 20%, 5%, 4% and 4%, respectively. Consequently, it can be concluded that the lower is the height of the structure, the more will be the increment of probability of damage in the near-field conditions. Furthermore, this increment is much more for IO limit state in comparison with other limit states. These facts can be applied as a precaution for seismic design of low-rise structures, while they are located at the vicinity of active faults.
Embedded Life Cycle Costing Elements in Green Building Rating Tool Khan, Jam Shahzaib; Zakaria, Rozana; Aminudin, Eeydzah; Adiana Abidin, Nur Izie; Mahyuddin, Mohd Affifuddin; Ahmad, Rosli
Civil Engineering Journal Vol 5, No 4 (2019): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (940.279 KB) | DOI: 10.28991/cej-2019-03091284

Abstract

Green Building rating tools are the essential need of this era, to cope up with the sustainable development goals, climate change, and natural resource degradation through buildings. Realization of green building incentives decently increased within past few decades with abrupt declination in real estate markets and economic depletion has decelerated the interest of investors towards the green building projects. This research calculates influence of costing elements in MyCREST (IS-design) using questionnaire survey distributed amongst qualified professionals (QP’S) of green buildings and expert practitioners. Firstly, factor score and then weightage factor was performed to produce the final result with weightage output for evaluating weighatge and ranking of the relevant criteria of MyCREST and life cycle cost elements respectively. It is found that the criteria of storm water management has weighatge of 0.236 as highest and criteria environmental management plan (EMP) as 0.061 as lowest. Research also identified another perspective by finding association of cost element at design stage of MyCREST and found that management cost is highly associated at design stage with the value of 87.7%. The outcome of this research will add value to green building development and map road towards sustainable development using green building tools to uplift quality of life. Furthermore, this paves a way to integrate various stages of MyCREST with life cycle costing tool to potentially contribute in evaluating cost association through green building rating tool.
Design Charts for Axially Loaded Single Pile Action Mohamad Ali, Anis Abdul Khuder; Kadim, Jaffar Ahemd; Mohamad, Ali Hashim
Civil Engineering Journal Vol 5, No 4 (2019): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1083.847 KB) | DOI: 10.28991/cej-2019-03091300

Abstract

The objective of this article is to generating the design charts deals with the axially ultimate capacity of single pile action by relating the soil and pile engineering properties with the pile capacity components. The soil and are connected together by the interface finite element along pile side an on its remote end.  The analysis was carried out using ABAQUS software to find the nonlinear solution of the problem. Both pile and soil were modeled with three-dimensional brick elements. The software program is verified against field load-test measurements to verify its efficiency accuracy. The concrete bored piles are used with different lengths and pile diameter is taken equals to 0.6 m. The piles were installed into a single layer of sand soil with angles of internal friction (20° t0 40°) and into a single layer of clay soil with Cohesion (24 to 96) kPa.  The getting results showed that for all cases study the total compression resistance is increased as pile length increased for the same property of soil, also illustrious that the total resistance of same pile length and diameter increased as the soil strength increasing. In addition, the same results were obtained for the end bearing resistance, skin resistance and tension capacity. Design charts were constructed between different types of soil resistance ratio and the pile length/diameter ratio (L/D) for all cases of study. One of improvement found from these curves that it is cheaply using piles of larger diameter than increasing their lengths for dense sand and to increasing piles lengths for loose sand. Moreover, it is inexpensively using piles of larger length in soft clay soil than increasing their diameter and piles of larger diameter in firm and stiff clay soils than increasing their length.
Experimental Study of the Rooster Tail Jump and End Sill in Horseshoe Spillways Vahid Hassanzadeh Vayghan; Mirali Mohammadi; Ali Ranjbar
Civil Engineering Journal Vol 5, No 4 (2019): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1154.797 KB) | DOI: 10.28991/cej-2019-03091295

Abstract

In a horseshoe spillways, due to the collision of the falling nappes from their surround walls, in the center of spillway’s trough, a spatial hydraulic jump is formed that named “rooster tail”. This study by using the physical model of horseshoe spillway, investigates the form, height and length of rooster tail jump. Based on the analytical methods, the effective parameters on rooster tail jump’s height and height were determined and their interaction was investigated and linear relationships were proposed to predict jump’s length and height. By increasing the amount of water on the spillway’s crest and thereby increasing the velocity of flow nappe at the point of contact with the spillway’s bed, length and high of rooster tail jump, linearly increased. The result also shows that by increasing number of Froude, the length and height of jump increases and by increasing the spillway’s length, the height and length of the rooster tail jump decreases. To control of rooster tail jump in spillway’s model, two different size of end sills Inserted at downstream of spillway  and result shows that by employing a sill with height of 3.8 cm and 7.6 cm, the flow depth, in average, respectively 122% and 272% increase compared to no sill conditions, also flow state change from super-critical to sub-critical. At the sill of 3.8 cm it was observed that the rooster tail jump did not submerged, but at the height of 7.6 cm the jump submerged and static pressure increased more. The results revealed that by placing the sill of 3.8 and 7.6 cm, respectively 45% and 35% of the maximum pressure entering the bed of the spillway at the collision site is reduced.
Land Covers Change Assessment After Small Dam’s Construction Based on the Satellite Data Nabi Bux Bhatti; Altaf Ali Siyal; Abdul Latif Qureshi; Imtiaz Ali Bhatti
Civil Engineering Journal Vol 5, No 4 (2019): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1005.522 KB) | DOI: 10.28991/cej-2019-03091290

Abstract

The small dams were constructed in the study area for storing the rainwater. The present study was conducted to assess the impact of small dams on the LCC (Land Cover Change) in Nangarparkar, Pakistan based on the satellite data. The ENVI (Environment for Visualizing Images) software was used for classification of the four year’s images and three classes viz. water, vegetation, and soil were taken for detection of LCC. The MLH (Maximum Likelihood) supervised method was used to classify the multispectral satellite images. The classified results of the classes were found different each year before and after dam construction. Average results of the two years before dam’s construction revealed that water availability, vegetation cover and soil cover was 3.02%, 18.52%, and 32.30% respectively. However, after the dam construction, the water availability, vegetation cover and soil cover was 8.49%, 34.33%, and 17.15% respectively. Overall results revealed that water availability and vegetation cover were increased by 5.47 % and 15.18% respectively while soil cover decreased 15.15% after the construction of dams. Hence, based on the results, it is confirmed that the constructions of small dams have a direct and indirect positive impact on the land cover changes and it can play an important role in the resettlement of the communities of the arid areas.
Performance of Concrete MRF at Near-Field Earthquakes Compared to Far-Field Earthquakes Raji, Farzaneh; Naeiji, Amir
Civil Engineering Journal Vol 5, No 4 (2019): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (733.051 KB) | DOI: 10.28991/cej-2019-03091285

Abstract

The characteristic of near-field earthquake records has been investigated in the previous studies. However, the effects of the near-field earthquakes on the response of the building structures need to be further investigated. Engineering demand parameters like inter-story drift ratio and floor acceleration can provide a good means for comparing the response of structures to the near-field and the far-field earthquakes. The main objective of this paper was to apply these two parameters to compare the behavior of the concrete Moment Resistant Frame (MRF) subjected to near-field and far-field ground motions. In this study, non-linear numerical simulations were performed on concrete MRF office buildings subjected to two sets of 14 near-field records and 14 far-field records. The analytical models simulated 4-story, 8-story, and 16 story buildings. The obtained results indicated that the near-field effects can increase the inter-story drift ratio and floor acceleration at lower stories of low and mid-rise building subjected to high ground motion intensities.
Characteristics of Traffic Accidents in Baghdad Albayati, Amjad H.; Lateef, Ishraq Mahdi
Civil Engineering Journal Vol 5, No 4 (2019): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (845.592 KB) | DOI: 10.28991/cej-2019-03091301

Abstract

Road traffic accidents (RTAs) are events that suddenly, inadvertently and unexpectedly occur under unforeseen circumstances that involve at least one moving vehicle and result in one or more road users being killed or injured. Unfortunately, Iraqi governorates suffer from higher rates of traffic accident casualties compared with the rates of casualties from terrorist attacks; this situation reveals a serious and growing problem. Road traffic accidents are not easy to eradicate. However, their prevalence can be reduced to the barest minimum via periodic assessments of traffic accident characteristics and the most important aspects for road authorities to consider when designing and evaluating the performance of a road to improve traffic and road users’ safety.Therefore, the primary objective of this paper is to evaluate traffic accidents in Baghdad using a retrospective analysis of accidents that occurred from 2006–2016 taking into consideration the following parameters: the cause of the accident, the genders of the victims, the number and type of vehicles involved in the accident, the time of the accident, the severity of the accident, the type of accident and the age group of the driver(s). The data were been obtained from the Central Statistical Organization in the Ministry of Planning. The results reveal that 12,019 RTAs occurred in the city of Baghdad; on average, 1,092 RTAs occurred each year. Twenty-two percent of the RTAs resulted in death, 67% resulted in injury and 6% resulted in both deaths and injuries. Only 4% of the RTAs resulted in property damage without victims. To this end, Baghdad has the highest prevalence of RTAs of all Iraqi governorates. These results provide scientific evidence to mobilize road authorities to effectively and urgently develop adequate traffic strategies and policies to reduce the epidemic of RTAs in Baghdad as well as other Iraqi governorates.
Comparative Study on Two Storey Car Showroom Using Pre-engineered Building (PEB) Concept Based on British Standards and Euro Code Balamuralikrishnan R.; Ibrahim Shabbir Mohammedali
Civil Engineering Journal Vol 5, No 4 (2019): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (920.422 KB) | DOI: 10.28991/cej-2019-03091296

Abstract

Majority of steel structures are used for low-rise single storey buildings mainly for industrial purpose. Steel structures are preferred for industrial buildings due to its higher strength to weight ratio as compare to RCC structures and steel structures also gives more free internal space by allowing long clear span between columns. Pre-engineered building (PEB) is a modern age concept of utilizing structural steel and optimizing the design by ensuring the economical integrity of the structure. The structural members are designed and fabricated in the factory under controlled environment to produce optimum sections by varying the thickness of the sections along the length of the member as per the bending moment requirement. The aim of the research paper is to analyses and design a PEB car showroom of two storey (G+1) using STAAD Pro in accordance to British standards (BS 5950-1:2000) and Euro codes (EC3 EN-1993-1) with wind and seismic analysis. In order to achieve the above aim of the project, two models of the car showroom were created namely British Standard (BS) model and Euro code (EC) model using STAAD Pro. The member property for BS model is assigned with tapered frame sections while the EC model is assigned with universal standard section frames. The load cases were assigned to the models for analysis include dead load, live load, wind load and seismic load. Wind load and seismic load being the critical dynamic loads that will be analyzed for the stability of the structure against lateral forces. The results from the analysis and design of the two models were within the allowable limits for ultimate and serviceability limit state since the internal stresses in all the members satisfies the unity check ratio requirements for both design codes. The dynamic analysis results suggest that EC model has higher resistance to seismic loading as compare to BS model since the maximum displacement with time in X-direction for EC model is 8.83 mm and for BS model is 10.5 mm. The total weight of the structure for BS model is 1125.431 kN and for EC model is 1214.315 kN, which makes EC model 7.9% heavier than BS model. Moreover, the total weight of all the portal frames for BS model is 457.26 kN and for EC model is 574.725 kN, which makes tapered frame sections to utilize and reduce the amount of steel by 25.7%. Therefore, BS model proved to be an economical model when compared to Euro code.  
Effect of Hospital Effluents and Sludge Wastewater on Foundations Produced from Different Types of Concrete Aamer Najim Abbas; Lubna M. Abd; Muhannd W. Majeed
Civil Engineering Journal Vol 5, No 4 (2019): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1105.427 KB) | DOI: 10.28991/cej-2019-03091291

Abstract

In last decades, there is an insufficiency of fresh water and construction works are increasing day by day consuming large amount of fresh water. Therefore research is processing on to employ the treated domestic wastewater in the preparation and curing of concrete. In this investigation, the concrete slab specimens casted with normal strength concrete and modified reactive powder concrete. The concrete specimens cast by using fresh water, wastewater, and hospital effluents water. The specimens cured in all water types for 28days and 56 days. At 28days curing with wastewater, a decrease in punching shear strength was observed from 24 kN in case of curing with fresh water to 21 kN and 20 kN in case of curing with wastewater and hospital effluents water respectively. Highest strength is exhibited by 56 days curing age, it was recorded about 32 kN, 24 kN and 23 kN punching shear strength of specimens cured with fresh water, wastewater and hospital effluents water respectively. The excess quantity of bicarbonates in treated domestic wastewater as curing water results a decrease in compressive strength of concrete specimens. Appearance of first crack was also affected significantly by using wastewater and hospital effluents water as curing water; 7.5 kN, 6.5 kN and 6 kN were the first crack loads of normal strength concrete panels cured with fresh water, wastewater and hospital effluents water, and 11 kN, 10 kN and 7.5 kN were the first crack loads of modified reactive powder concrete cured with fresh water, wastewater and hospital effluents water.

Page 1 of 3 | Total Record : 21


Filter by Year

2019 2019


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol 10, No 5 (2024): May Vol. 10 No. 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue