cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 15 Documents
Search results for , issue "Vol 6, No 10 (2020): October" : 15 Documents clear
Experimental Study on the Structural Behavior of Cast in-situ Hollow Core Concrete Slabs Akhtar Gul; Khan Shahzada; Bashir Alam; Yasir Irfan Badrashi; Sajjad Wali Khan; Fayaz A. Khan; Abid Ali; Zahid Ur Rehman
Civil Engineering Journal Vol 6, No 10 (2020): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091597

Abstract

An experimental work has been carried out to study the flexural behavior of cast in-situ hollow core reinforced concrete (HCRC) slabs constructed by using easy, cost effective and implementable techniques in field. The precast elements made of different easily available affordable material i.e. concrete, polyvinyl chloride (PVC) and plaster of paris having voided cross- sections of circular, rectangular and triangular shapes were incorporated in one direction during pouring of concrete with minimum flexural reinforcement to construct HCRC slabs. A total of 14 slab specimens including 02 specimens per specification were tested with third point loading for the assessment of flexural behavior as per ASTM standards C78/C78M. The flexural behavior of HCRC slabs with polyvinyl and plaster of paris elements having hollow cross-sections was comparable with the control solid slabs, however, HCRC slab with concrete pipes showed 7 to 8 percent reduction in flexural strength with 19 to 20 percent reduction in self-weight. All the tested specimens performed well in shear as no shear failure was observed. This study reveals that HCRC slabs with locally available material having hollow cross section elements can be used for the construction of cast in-situ monolithic construction of one-way slabs with ordinary construction techniques. Doi: 10.28991/cej-2020-03091597 Full Text: PDF
The Construction Of Roadbeds on Permafrost and in Swamps from Reinforced Soils of Increased Strength Anatoly N. Shuvaev; Anton P. Smirnov; Sergey V. Kartavy
Civil Engineering Journal Vol 6, No 10 (2020): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091592

Abstract

The paper presents the history of the transport infrastructure of the West-Siberian oil and gas complex in the last century and ways to solve the problems of road construction in the twenty-first century. The development of the territory of Siberia and the North in the present period is constrained by the low rates of development of the transport structure. One of the reasons for this lag is the lack of regulatory documents to substantiate transport structures in the harsh climatic and difficult soil and geological conditions based on the use of new modern road-building materials. The development of new resource-saving materials, structures and technologies based on local building materials, products and industrial waste using modern methods and research methods in materials science is an aim of current study. The general research methodology consisted of theoretical, laboratory and field studies. The developed designs and technologies for the construction of embankments in permafrost and in swamps using geotechnical holders filled with unsuitable soils (thawed and frozen waterlogged peat and clay soils) can reduce the volume of work and the cost of construction by one and a half to two times while increasing the service life of structures. The experimental sites of embankments constructed between 1995 and 2009 in the wetlands of the Uvat Group of deposits in the Tyumen Region and in permafrost in the areas of Novy Urengoy have been observed for more than ten years. The artificial stone material tested in Murmansk and Surgut based on the strengthening of local soils with inorganic binders with polymer additives using modern technologies allows it to be used instead of imported stone materials and reinforced concrete slabs for the construction of structural layers of road pavements, reinforcing slopes, as well as in hydraulic structures. The new artificial stone material is characterized by high strength and durability in areas with a temperature gradient of the external environment of more than 100 (from +50 to -50 °C).
Shear Strength of Reinforced Concrete Columns Retrofitted by Glass Fiber Reinforced Polyurea Jun-Hyeok Song; Eun-Taik Lee; Hee-Chang Eun
Civil Engineering Journal Vol 6, No 10 (2020): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091587

Abstract

Aged structures and structures constructed based on outdated non-seismic design codes should be retrofitted to enhance their strength, ductility, and durability. This study evaluates the structural performance of reinforced concrete (RC) columns enhanced via polyurea or glass fiber reinforced polyurea (GFRPU) strengthening. Four RC column specimens, including a reference specimen (an unstrengthened column), were tested to evaluate the parameters of the strengthening materials and the strengthened area. The tests were carried out under a combined constant axial compressive load and quasi-static cyclic loading. The experimental results show that the composite strengthening provides lateral confinement to the columns and leads to enhanced ductility, shear-resistance capacity, and dissipated energy. The shear strength provided by the composites depends on the degree of lateral confinement achieved by the composite coating. The specimens finally failed through the development of diagonal tension cracks within the potential plastic hinge regions. The specimen treated with GFRPU strengthening showed greater strength and dissipated more energy than the specimen treated with polyurea strengthening. Furthermore, by modifying ATC-40, this study proposed an equation to estimate the shear capacity provided by the composites.
Analysis of Orthotropic RC Rectangular Slabs Supported on Two Adjacent Edges - A Simplistic Approach Sushant Gupta; Sanjeev Naval
Civil Engineering Journal Vol 6, No 10 (2020): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091598

Abstract

The design of reinforced concrete slabs supported on two adjacent edges involves complex formulations. In this paper, a simplistic approach is presented for designing orthotropic slabs supported on two adjacent edges. Slab supported on two adjacent edges (existing slab) is transformed into a slab supported on three edges (equivalent slab) by taking a mirror image of the yield line pattern of two adjacent edges supported RC slabs about its unsupported edges to get the exact collapse mechanism for the slabs supported on three edges. The equivalent aspect ratio can be used in the equations already developed for the slabs supported on three sides. Ultimate moment carrying capacity of the slab carrying uniform load can be evaluated by using the available analytical formulations of the slab supported on three edges. So, the present approach gives a simplified method to analyse and design the orthotropic RC rectangular slab supported on two adjacent edges using the equations available for slab supported on three adjacent edges. Hence, the simplistic approach will be very helpful for structural designers dealing with analysis and design of slabs supported on two adjacent edges. Doi: 10.28991/cej-2020-03091598 Full Text: PDF
Compressive Strength and Bulk Density of Concrete Hollow Blocks (CHB) Infused with Low-density Polyethylene (LDPE) Pellets Alvin Joseph Santos Dolores; Jonathan David Lasco; Timothy M. Bertiz; Kimjay M. Lamar
Civil Engineering Journal Vol 6, No 10 (2020): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091593

Abstract

Infusing plastic waste to concrete and masonry structures is an increasingly common industry practice that has the potential to create an environment-friendly material that can improve some of the material’s properties, craft a novel means to repurpose plastic waste, and reduce the need for mining aggregates in the environment. This concept has been studied extensively in different forms of concrete, as shown by several studies; however, there is a dearth of studies focusing on the incorporation plastic waste in concrete hollow blocks (CHB). In this study, we aim to fill that gap by investigating on the effects of incorporating low-density polyethylene (LDPE), a commonly used plastic material, to CHB on its compressive strength and bulk density. Samples of varying percentages of LDPE replacement by volume (0, 10, 20, 30 and 40%) were fabricated and tested. Results showed a general trend of decreasing compressive strength and bulk density upon increasing the amount of LDPE pellets in CHB, which was also observed in previous studies. However, the compressive strength of CHB increased at 10% LDPE replacement, a result similar to a previous study. It was inferred that the strength of the plastic material could have a direct contribution to the compressive strength of CHB at low percentage of aggregate replacement. Statistical analysis showed that the mix with 10% LDPE pellets as replacement to sand was the best among the samples tested. It was shown that CHB infused with LDPE pellets has a higher compressive strength than what is normally used in the Philippines. It was concluded that based on compressive strength and bulk density, LDPE pellets is a viable material to use as partial replacement to sand in non-load bearing CHB.
Meteorological Drought and its Relationship with Southern Oscillation Index (SOI) Harisuseno, Donny
Civil Engineering Journal Vol 6, No 10 (2020): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091588

Abstract

Drought monitoring, including its severity, spatial, and duration is essential to enhance resilience towards drought, particularly for overcoming drought risk management and mitigation plan. The present study has an objective to examine the suitability of the Standardized Precipitation Index (SPI) and Percent of Normal Index (PN) on assessing drought event by analyzing their relationship with the Southern Oscillation Index (SOI). The monthly rainfall data over twenty years of the observation period were used as a basis for data input in the drought index calculation. The statistical association analyses, included the Pearson Correlation (r), Kendal tau (Ï„), and Spearman rho (rs) used to assess the relationship between the monthly drought indexes and SOI. The present study confirmed that the SPI showed a more consistent and regular pattern relationship with SOI basis which was indicated by a moderately high determination coefficient (R2) of 0.74 and the magnitude of r, Ï„, and rs that were of 0.861, 0.736, and 0.896, respectively. Accordingly, the SPI showed better compatibility than the PN for estimating drought characteristics. The study also revealed that the SOI data could be used as a variable to determine the reliability of drought index results.
Bivariate Hydrologic Risk Assessment of Flood Episodes using the Notation of Failure Probability Latif, Shahid; Mustafa, Firuza
Civil Engineering Journal Vol 6, No 10 (2020): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091599

Abstract

Floods are becoming the most severe and challenging hydrologic issue at the Kelantan River basin in Malaysia. Flood episodes are usually thoroughly characterized by flood peak discharge flow, volume and duration series. This study incorporated the copula-based methodology in deriving the joint distribution analysis of the annual flood characteristics and the failure probability for assessing the bivariate hydrologic risk. Both the Archimedean and Gaussian copula family were introduced and tested as possible candidate functions. The copula dependence parameters are estimated using the method-of-moment estimation procedure. The Gaussian copula was recognized as the best-fitted distribution for capturing the dependence structure of the flood peak-volume and peak-duration pairs based on goodness-of-fit test statistics and was further employed to derive the joint return periods. The bivariate hydrologic risks of flood peak flow and volume pair, and flood peak flow and duration pair in different return periods (i.e., 5, 10, 20, 50 and 100 years) were estimated and revealed that the risk statistics incrementally increase in the service lifetime and, at the same instant, incrementally decrease in return periods. In addition, we found that ignoring the mutual dependency can underestimate the failure probabilities where the univariate events produced a lower failure probability than the bivariate events. Similarly, the variations in bivariate hydrologic risk with the changes of flood peak in the different synthetic flood volume and duration series (i.e., 5, 10, 20, 50 and 100 years return periods) under different service lifetimes are demonstrated. Investigation revealed that the value of bivariate hydrologic risk statistics incrementally increases over the project lifetime (i.e., 30, 50, and 100 years) service time, and at the same time, it incrementally decreases in the return period of flood volume and duration. Overall, this study could provide a basis for making an appropriate flood defence plan and long-lasting infrastructure designs. Doi: 10.28991/cej-2020-03091599 Full Text: PDF
Liquefaction Analysis using Shear Wave Velocity Filali Kamel; Sbartai Badreddine
Civil Engineering Journal Vol 6, No 10 (2020): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091594

Abstract

The Andrus and Stokoe curves developed based on shear wave velocity case history databases, are the most widely used in the context of the Seed and Idriss simplified procedure as a deterministic model. Theses curves were developed from the database according to the calculate cyclic stress ratio (CSR) proposed by Seed and Idriss in 1971 with the assumption that the dynamic cyclic shear stress (τd) is always less than the simplified cyclic shear stress (τr) deduced by Seed and Idriss based on their simplifying hypotheses (rd= τd / τr <1). Filali and Sbartai in 2017, showed that rd can in many cases be greater than 1, and they have proposed a correction for the CSR in the range where rd >1. In this paper, we will present a probabilistic study based on the Bayesian method for the evaluation of the liquefaction potential of a soil deposit using a case history database based on shear wave velocity measurement. The result of this analysis shows that by using the corrected version of the simplified method, the boundary curve is moved to a new position. Then, the objective of this study is to present an adjusted mathematical model which characterizes the new position of the boundary curve (CRR) and a new formulation for computing the probability of liquefaction based on the probabilistic shape of the CRR curves using the corrected and the original version of the simplified method.
Effect of Fibrous Jacket on Behavior of RC Columns Wathiq Jassim; Samir M. Chassib
Civil Engineering Journal Vol 6, No 10 (2020): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091589

Abstract

This paper presented an extensive study about the strengthening of RC square short columns with high strength concrete jackets reinforced with steel fiber. The aim of this study is to investigate the effect of confinement by fibrous jacket on the behavior of RC column. A comparative study is performed on 23 square columns (six of them were unconfined columns where the remaining seventeen were confined columns) with varied parameters such as steel fibers ratio and type, jacket thickness, partial and full strengthening, type of confining jacket (hoop and composite), use of epoxy as bond material between the concrete column and strengthening jacket, and length parameter. The test results showed that the strengthened columns showed a significant improvement in the ultimate stress, load-carrying capacity, maximum strain, ductility, and energy absorption. Increase the steel fibers ratio (1, 1.5 and 2%) increased the ultimate stress by (22.5, 12.3 and 12.5%) respectively. The use of epoxy as bond material enhanced the ultimate stress by an average improvement by (55%). Composite case in the strengthening enhanced the load-carrying capacity larger than hoop case by (28.7 and 42%) for FRC jackets with hooked and straight fibers respectively but in case of stress capacity, hoop jacket carries stresses more than composite according to the stressed cross-sectional area. Increase jacket thickness (25 and 35 mm) enhanced the ultimate stress by (28.7 and 15.5%) respectively. Partial strengthening has a good enhancement in the ultimate load but was less than full strengthening. Increase the length by (25 cm) decreased the enhancement in load capacity of the column with hoop jacket by (45.3%). Concrete jackets enhanced Energy absorption and ductility which improved the deformation capacity. The compressive behavior of stub concrete columns was also modeled, simulated, and analyzed numerically by a 3D nonlinear finite element model. The verification process was performed against the reported data of the experimental test which proved the results of experimental results and showed a good agreement between experimental and numerical outcomes.
Evaluation of Seismic Performance of Steel Lattice Transmission Towers Uğur Albayrak; Loai A. M. Morshid
Civil Engineering Journal Vol 6, No 10 (2020): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091600

Abstract

The electricity transmission systems are an important lifeline for modern societies. They are used for overhead power lines as supporting structures. Transmission towers are designed to meet electrical and structural requirements. They are designed according to the weight of conductors and environmental effects such as wind and ice loads. They also considered other extraordinary stresses such as cable breakage and ice-breaking effects. Because of a common perception that transmission line (TL) towers show low sensitivity to earthquakes, the effects of the earthquake in TL tower construction are not considered. For this reason, TL towers are investigated with regard to the seismic performance in this study. The principal objectives of this research are: i) to assess the sensitivity of typical TL towers to earthquake loads, ii) to retrofit an existing steel lattice tower using a new section Centre To Center (CTC). In this study, a finite element model of a representative 154 KV transmission tower in Turkey was performed using a set of 10 recorded earthquake ground movements. The four-legged square TL tower has been analyzed and designed for Turkey, Eskisehir seismic zone considering 42.95 m height using finite element (FE) software. Therefore, a new section Centre To Center (CTC) type has been designed and the failed sections have been replaced with a designed section using the SAP2000 section designer. The results show that the load of failure increased after retrofitting. The retrofitting method was effective and easily conducted in fields. Doi: 10.28991/cej-2020-03091600 Full Text: PDF

Page 1 of 2 | Total Record : 15


Filter by Year

2020 2020


Filter By Issues
All Issue Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol 10, No 5 (2024): May Vol. 10 No. 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue