cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 14 Documents
Search results for , issue "Vol 8, No 2 (2022): February" : 14 Documents clear
The Effect of Adding Steel Fibers and Graphite on Mechanical and Electrical Behaviors of Asphalt Concrete M. Messaoud; B. Glaoui; O. Abdelkhalek
Civil Engineering Journal Vol 8, No 2 (2022): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-02-012

Abstract

Conductive asphalt concrete can satisfy different and multifunctional applications such as heating roads to get rid of snow and ice and assure auto-detection, auto-cure, and energy recovery. This research aims to evaluate the performance of asphalt concrete with additives like steel fibers and graphite powder. This work is based on destructive tests (direct tensile test FENIX) and non-destructive tests (electrical resistivity measures). The obtained results indicate that the tensile resistance, dissipated energy, and ductility module of asphalt concrete increased with the increasing steel fiber percentage. Direct tensile strength, cracking resistance, and dissipated energy increased as graphite percentage increased, while the ductility module decreased. Electrical resistivity decreased when it added steel fibers and graphite. Therefore, it found that tensile strength increased reversibly with electrical resistance. When adding steel fibers or graphite powder, the dissipated energy of asphalt concrete is increased while electrical resistivity is decreased. The dissipated energy of conductive asphalt concrete with steel fibers is higher than that with graphite powder. Electrical resistivity decreased significantly with increasing steel fibers, compared to electrical resistivity with graphite. The obtained results indicate that asphalt concrete cracking resistance is higher with the optimal percentage of steel fibers added at 1% and better mechanical performance. Doi: 10.28991/CEJ-2022-08-02-012 Full Text: PDF
Investigating the Effect of Gradation, Temperature and Loading Duration on the Resilient Modulus of Asphalt Concrete Muhammad Junaid; Muhammad Zafar Ali Shah; Ghulam Yaseen; Hammad Hussain Awan; Daud Khan; Muhammad Jawad
Civil Engineering Journal Vol 8, No 2 (2022): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-02-07

Abstract

This research was carried out to assess the effect of aggregate skeleton, temperature variation, and loading duration on the resilient modulus of asphalt concrete mixtures. Two different gradation methods, i.e., the conventional method of gradation and the Bailey method of gradation, were adopted to design the aggregate skeleton. The effect of these gradation methods, with temperature and loading duration, on the resilient modulus of asphalt concrete has not been previously investigated. The Modified Marshall Test was used to determine optimum binder content against 4% air voids, and then volumetric and strength parameters were calculated against optimum binder content. For performance tests, specimens were prepared at optimum binder content using a Superpave gyratory compactor. An indirect tensile strength test on both types of mixtures was conducted, and a 20% value of indirect tensile strength was kept for peak load, whereas 10% was kept for seating load for conducting resilient modulus tests. The tests were conducted at 100 and 300 ms duration loads under two different temperatures, i.e., 25 oC and 40 oC. The results declared that aggregate skeleton, temperature, and loading duration have a prominent effect on the resilient modulus of asphalt concrete mixtures. Bailey gradation mixtures disclosed higher resilient modulus values than conventional gradation mixtures. Higher values of resilient modulus were observed for both gradation mixtures at low temperatures and under small duration loads than at high temperatures and large duration loads. The results of the two-way factorial design also confirmed the above findings. Doi: 10.28991/CEJ-2022-08-02-07 Full Text: PDF
Landslide Susceptibility Mapping using Machine Learning Algorithm Muhammad Afaq Hussain; Zhanlong Chen; Run Wang; Safeer Ullah Shah; Muhammad Shoaib; Nafees Ali; Daozhu Xu; Chao Ma
Civil Engineering Journal Vol 8, No 2 (2022): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-02-02

Abstract

Landslides are natural disasters that have resulted in the loss of economies and lives over the years. The landslides caused by the 2005 Muzaffarabad earthquake heavily impacted the area, and slopes in the region have become unstable. This research was carried out to find out which areas, as in Muzaffarabad district, are sensitive to landslides and to define the relationship between landslides and geo-environmental factors using three tree-based classifiers, namely, Extreme Gradient Boosting (XGBoost), Random Forest (RF), and k-Nearest Neighbors (KNN). These machine learning models are innovative and can assess environmental problems and hazards for any given area on a regional scale. The research consists of three steps: Firstly, for training and validation, 94 historical landslides were randomly split into a proportion of 7/3. Secondly, topographical and geological data as well as satellite imagery were gathered, analyzed, and built into a spatial database using GIS Environment. Nine layers of landslide-conditioning factors were developed, including Aspect, Elevation, Slope, NDVI, Curvature, SPI, TWI, Lithology, and Landcover. Finally, the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) value were used to estimate the model's efficiency. The area under the curve values for the RF, XGBoost, and KNN models are 0.895 (89.5%), 0.893 (89.3%), and 0.790 (79.0%), respectively. Based on the three machine learning techniques, the innovative outputs show that the performance of the Random Forest model has a maximum AUC value of 0.895, and it is more efficient than the other tree-based classifiers. Elevation and Slope were determined as the most important factors affecting landslides in this research area. The landslide susceptibility maps were classified into four classes: low, moderate, high, and very high susceptibility. The result maps are useful for future generalized construction operations, such as selecting and conserving new urban and infrastructural areas. Doi: 10.28991/CEJ-2022-08-02-02 Full Text: PDF
Engineering and Durability Properties of Modified Coconut Shell Concrete Trokon Cooper Herring; Joseph N. Thuo; Timothy Nyomboi
Civil Engineering Journal Vol 8, No 2 (2022): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-02-013

Abstract

Making low-cost concrete from coconut shell ash and coconut shell aggregate increases sustainability and reduces pollution. This research investigates untreated Coconut Shell Particles (CSP) incorporated with coconut shell ash (CSA) to improve the durability properties at elevated temperatures and in sulphuric acid. Initially, the physical and mechanical properties of cube and cylinder specimens after 7, 28, 56, and 90 days of moist curing were studied. The durability properties were then carried out after the pozzolanic component of CSA in modified concrete was activated. CSA and CSP were used as partial substitutes for ordinary Portland cement and coarse aggregate in class 30 concrete with a constant water to cement ratio of 0.55. Concrete mixes included control, 5% CSP, 10% CSA, and a mixture of 5% CSP incorporated with 10% CSA. According to test results, adding 10% of CSA to CSP concrete decreased the workability, density, and water absorption properties compared to the rest of the concrete mixes. However, these results were within acceptable limits. The compressive strength of 10% CSA concrete at 90 days of moist curing was reduced by 3.23% when 5% CSP was added compared to control. The addition of 10% of CSA to 5% CSP concrete improved the split tensile strength by 2.76% higher than concrete with only 5% CSP. Concrete containing the combination of 10% CSA and 5% CSP showed a 9.37% increment in the split tensile strength compared to concrete having only 5% CSP after sulphuric acid exposure. Also, the compressive strength of 10% CSA and 5% CSP concrete improved by 30.7% when the temperature was elevated to 500 °C for 1 hour compared to the control concrete. Moreover, the reduction in the compressive strength after exposure to the elevated temperature of 500 °C for 1 hr. was still much less by an average of 75.38% compared to other waste materials blended into the concrete by previous works. Doi: 10.28991/CEJ-2022-08-02-013 Full Text: PDF
Assessment and Evaluation of IWRM Implementation in Palawan, Philippines Cacal, Jennifer C.; Taboada, Evelyn B.
Civil Engineering Journal Vol 8, No 2 (2022): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-02-08

Abstract

According to the United Nation's Sustainable Development Goal (SDG 6), the world needs to sustainably manage water resources through integrated water resource management (IWRM). The Philippines is committed to this goal by ensuring the implementation of IWRM at all levels. Concurrently, there is growing evidence that there is presently no consolidated data on the status of implementation at the sub-national level. With water shortages on the increase, it's more important than ever to find solutions to settle disputes and trade-offs so that water can be distributed effectively, sustainably, and equally. This paper aims to investigate the degree of implementation of IWRM that presents the actual state of affairs in terms of water management at the sub-national level. This study is focused on Palawan Province, with the following sites: Puerto Princesa City, El Nido, Roxas, and Taytay. A structured survey questionnaire was drawn up in accordance with the existing questionnaire developed for this purpose. The obtained data were computed using the steps developed for calculating the indicators of IWRM implementation degree. Puerto Princesa City, El Nido, Roxas, and Taytay have the following IWRM ratings: 39.93, 32.03, 37.99, and 36.32%, respectively, which means "medium-low" in which the IWRM components have largely been institutionalized, and deployment is well underway. In these regions, a subnational water management scheme exists, but its maximum capacity is mostly unrealized due to numerous constraints. The findings show that the numerous water laws are confusing and that water data for planning purposes is lacking. Even though there are many water agencies, they are not interconnected. This study is useful for successful IWRM implementation, which should encourage sustainable water resource management for environmental sustainability. Integrated methods for water resource management help to organize sustainable growth by assessing how water is handled in agriculture, urban applications, and the surrounding ecosystems. Doi: 10.28991/CEJ-2022-08-02-08 Full Text: PDF
Calibration of a New Concrete Damage Plasticity Theoretical Model Based on Experimental Parameters Alaa H. Al-Zuhairi; Ali H. Al-Ahmed; Ali A. Abdulhameed; Ammar N. Hanoon
Civil Engineering Journal Vol 8, No 2 (2022): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-02-03

Abstract

The introduction of concrete damage plasticity material models has significantly improved the accuracy with which the concrete structural elements can be predicted in terms of their structural response. Research into this method's accuracy in analyzing complex concrete forms has been limited. A damage model combined with a plasticity model, based on continuum damage mechanics, is recommended for effectively predicting and simulating concrete behaviour. The damage parameters, such as compressive and tensile damages, can be defined to simulate concrete behavior in a damaged-plasticity model accurately. This research aims to propose an analytical model for assessing concrete compressive damage based on stiffness deterioration. The proposed method can determine the damage variables at the start of the loading process, and this variable continues to increase as the load progresses until complete failure. The results obtained using this method were assessed through previous studies, whereas three case studies for concrete specimens and reinforced concrete structural elements (columns and gable beams) were considered. Additionally, finite element models were also developed and verified. The results revealed good agreement in each case. Furthermore, the results show that the proposed method outperforms other methods in terms of damage prediction, particularly when damage is calculated using the stress ratio. Doi: 10.28991/CEJ-2022-08-02-03 Full Text: PDF
Effect of Distracting Factors on Driving Performance: A Review Neero Gumsar Sorum; Dibyendu Pal
Civil Engineering Journal Vol 8, No 2 (2022): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-02-014

Abstract

The number of traffic accidents because of distracted driving is increasing rapidly worldwide. Hence, the main objective of the present study is to review the effects of different distracting factors on driving performance indicators. Distracting factors considered in this study are roadside advertisements (billboards), mobile use, in-built vehicle systems, and sleepiness; and driving performance indicators are lane deviation, reaction time, and speed variation. Studies from existing literature reveal that all the distracting factors distract drivers from forwarding roadways in many ways. The location and content displayed on the billboard and the use of mobile phones increase reaction time. However, the former decreases the driver’s ability to control the vehicle, and the latter increases the speed variation and reduces lane-keeping capacity. Lateral vehicle control and reaction time are compromised when drivers engage in searching for songs or videos on music players. When sleepiness occurs, drivers exhibit a higher standard deviation of speed and a decreased headway distance. Nevertheless, most of the studies in this area are carried out in developed countries like the USA and European countries. Therefore, a detailed study and further research in developing countries like India, where activities like installing billboards and mobile phone use are increasing day by day due to the rapid urbanization of major cities in the country, are quite essential. Doi: 10.28991/CEJ-2022-08-02-014 Full Text: PDF
Seismic Pounding Response of Neighboring Structure using Various Codes with Soil-Structure Interaction Effects: Focus on Separation Gap Ganesh Deoraoji Awchat; Amruta Monde; Rajat Sirsikar; Rahul Dingane; Gopal Dhanjode
Civil Engineering Journal Vol 8, No 2 (2022): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-02-09

Abstract

Due to the high cost and less availability of land, the buildings are constructed adjacent to each other with a significantly smaller separation gap. Whenever seismic forces act on adjacent structures, they collide and cause significant structural and architectural damage. Soil-Structure Interaction (SSI) effects cause more complications in the adjacent structures. This paper assesses the gap distance between RC bare frame adjacent structures of varying heights in medium and soft soil with and without SSI to avoid the pounding effect of an earthquake. The main objectives are to find the separation distance between adjacent buildings by the provisions of FEMA 356, IS 1893 (Part 1):2002, IS 1893 (Part 1):2016 and EN 1998-1:2004. The separation gap between different codes was then compared to determine the minimum separation required to prevent pounding between the structures. The maximum lateral displacement on the roof and the time period of the adjacent buildings are compared with and without SSI. There is a significant increase in lateral displacement, separation distance, and time period considering SSI. It is found that the Indian code overestimates the separation distance. Thus, this study guides structural engineers to maintain a minimum separation distance between buildings erected on medium and soft soils in high seismic zones of India. Doi: 10.28991/CEJ-2022-08-02-09 Full Text: PDF
Improvement of the Mechanical Behavior of an Environmental Concrete Based on Demolished Concrete Waste and Silica Fume Oussama Kessal; Larbi Belgraa; Noura Djebri; Soumia Salah; Zineb Allal
Civil Engineering Journal Vol 8, No 2 (2022): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-02-04

Abstract

The universal need to conserve resources, protect the environment, and use energy efficiently must necessarily be felt in the field of concrete technology. In Algeria, the rapid growth in the construction sector and the difficulties in setting up new quarries make it necessary to find effective alternatives to use them as building materials. The recycling of construction and demolition waste as a source of aggregates for the production of concrete has attracted growing interest from the construction industry. In this context, this work is a part of the approach to provide answers to concerns about the lack of aggregates for concrete. It also aims to develop the inert fraction of demolition materials, mainly concrete construction demolition waste (C&D), as a source of aggregates for the manufacture of new hydraulic concrete based on recycled aggregates. This experimental study presents the results of physical and mechanical characterizations of natural and recycled aggregates, as well as their influence on the properties of fresh and hardened concrete. The characterization of the materials used has shown that the recycled aggregates have heterogeneity, a high-water absorption capacity, and medium-quality hardness. However, the limits prescribed by the standards in force do not disqualify these materials from use for application as recycled aggregate concrete. The effect of silica fume and superplasticizer percentage on the mechanical and physical properties of concrete with NA and RA was analyzed and optimized using full-factorial design methodology. The results obtained from the present study show acceptable mechanical, compressive, and flexural strengths of concrete based on recycled aggregates by using Superplasticizer and 5% of silica fume, compared to those with natural aggregates. The results of the water absorption as well as the UPV confirm the positive effect of the use of superplasticizer and silica fume on the physical and mechanical behavior of concrete with recycled aggregates. Factorial design analysis shows that the developed mathematical models can be used to predict the physical and mechanical properties of concrete with RAC, superplasticizer, and silica fume. Doi: 10.28991/CEJ-2022-08-02-04 Full Text: PDF
Reinforced-concrete Bond with Brine and Olive Oil Mill Wastewater Husein A. Alzgool; Ahmad S. Alfraihat; Hadeel Alzghool
Civil Engineering Journal Vol 8, No 2 (2022): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-02-010

Abstract

Since the interaction between the steel reinforcement and concrete directly controls the bond strength between them, poor bond performance results in a direct negative effect on the existing state of reinforced concrete structures. This bond is one of the most important factors affecting the strength of reinforced concrete. The bond strength is measured using the pull-out test. The present paper discusses the effect of the addition of brine and olive oil mill wastewaters to the reinforced concrete mixes. The main objective of this study is to determine the effect of brine wastewaters and olive oil mill wastewaters on the bond strength between steel and concrete when adding each of the admixtures to the concrete components. Pull-out tests were conducted on concrete mixes with additive contents of 2.5, 5, 7.5, 10, and 15 % by weight of water for each. It was found that the bonding strength of reinforced concrete specimens with an olive oil mill and brine wastewater improved and decreased by approximately 6–10% and 2–5%, respectively, if compared to the reference samples. These values were observed for mixes with additive contents of 7.5% for olive oil mill wastewaters and 10% for brine wastewaters. Doi: 10.28991/CEJ-2022-08-02-010 Full Text: PDF

Page 1 of 2 | Total Record : 14


Filter by Year

2022 2022


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol. 10 No. 5 (2024): May Vol 10, No 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue