cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
AI Mix Design of Fly Ash Admixed Concrete Based on Mechanical and Environmental Impact Considerations Kennedy C. Onyelowe; Ahmed M. Ebid; Hisham A. Mahdi; Fortune K. C. Onyelowe; Yazdan Shafieyoon; Michael E. Onyia; Hyginus N. Onah
Civil Engineering Journal Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges"
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-SP2023-09-03

Abstract

It has become very important in the field of concrete technology to develop intelligent models to reduce overdependence on laboratory studies prior to concrete infrastructure designs. In order to achieve this, a database representing the global behavior and performance of concrete mixes is collected and prepared for use. In this research work, an extensive literature search was used to collect 112 concrete mixes corresponding to fly ash and binder ratios (FA/B), coarse aggregate and binder ratios (CAg/B), fine aggregate and binder ratios (FAg/B), 28-day concrete compressive strength (Fc28), and the environmental impact point (P) estimated as a life cycle assessment of greenhouse gas emissions from fly ash- and cement-based concrete. Statistical analysis, linear regression (LNR), and artificial intelligence (AI) studies were conducted on the collected database. The material binder ratios were deployed as input variables to predict Fc28 and P as the response variables. From the collected concrete mix data, it was observed that mixes with a higher cement content produce higher compressive strengths and a higher carbon footprint impact compared to mixes with a lower amount of FA. The results of the LNR and AI modeling showed that LNR performed lower than the AI techniques, with an R2(SSE) of 48.1% (26.5) for Fc and 91.2% (7.9) for P. But ANN, with performance indices of 95.5% (9.4) and 99.1% (2.6) for Fc and P, respectively, outclassed EPR with 90.3% (13.9) and 97.7% (4.2) performance indices for Fc and P, respectively. Taylor’s and variance diagrams were also used to study the behavior of the models for Fc28 and P compared to the measured values. The results show that the ANN and EPR models for Fc28 lie within the RMSE envelop of less than 0.5% and a standard deviation of between 15 MPa and 20 MPa, while the coefficient of determination sector lies between 95% and 99% except for LNR, which lies in the region of less than 80%. In the case of the P models, all the predicted models lie within the RMSE envelop of between 0.5% and 1.0%, a coefficient of determination sector of 95% and above, and a standard deviation between 2.0 and 3.0 points of impact. The variance between measured and modeled values shows that ANN has the best distribution, which agrees with the performance accuracy and fits. Lastly, the ANN learning ability was used to develop a mix design tool used to design sustainable concrete Fc28 based on environmental impact considerations. Doi: 10.28991/CEJ-SP2023-09-03 Full Text: PDF
Development of Eco-friendly Self-compacting Concrete Using Fly Ash and Waste Polyethylene Terephthalate Bottle Fiber Slamet Widodo; Rifki Alfirahma; Alamsyah Prawiranegara; M Fajar Amir; Aniswara Dewi
Civil Engineering Journal Vol 9, No 2 (2023): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-02-014

Abstract

This study aims to utilize fly ash and waste PET bottles for producing more sustainable self-compacting concrete (SCC) with better mechanical strength. Fly ash is utilized as a supplementary cement material and waste PET bottles as fiber reinforcement to improve its flexural strength and achieve the targeted compressive strength. The experimental works were conducted on eight variations using 80 specimens, divided into two main groups of partial cement replacement using 0% and 15% fly ash by weight. The two variants are added with PET fiber based on the volume fractions of 0%, 0.25%, 0.50%, and 0.75%. Fresh concrete was tested using the slump flow method (T50) and the Visual Stability Index (VSI) based on ASTM 1611. The hardened concrete tests are conducted after 56 days and include testing the concrete's compressive strength, flexural strength, and ultrasonic pulse velocity. Test results showed that the presence of PET fiber in the SCC mix decreased its flowability. However, when added up to 0.75%, the mixes still meet the flowability requirements of fresh-state SCC. PET fiber addition tends to reduce the compressive strength, whereas the reduction in compressive strength of SCC with PET fiber without fly ash is insignificant. However, in SCC that uses fly ash, the addition of PET fiber causes a significant decrease in its compressive strength. Adding PET fiber into SCC mixes can increase flexural strength, both for the two variants: SCC without fly ash and SCC with fly ash. It can be concluded that PET waste fiber with an aspect ratio of 40 can be added up to 0.5% for SCC without fly ash and up to 0.25% by volume fraction for SCC with fly ash addition. The ultrasonic pulse velocity test results have an excellent tendency to predict the concrete's compressive and flexural strengths. Therefore, the UPV test can be applied for the non-destructive test evaluation of PET fiber-reinforced SCC. Doi: 10.28991/CEJ-2023-09-02-014 Full Text: PDF
Forecasting the Real Estate Housing Prices Using a Novel Deep Learning Machine Model Hossam H. Mohamed; Ahmed H. Ibrahim; Omar A. Hagras
Civil Engineering Journal Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges"
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-SP2023-09-04

Abstract

There is an urgent need to forecast real estate unit prices because the average price of residential real estate is always fluctuating. This paper provides a real estate price prediction model based on supervised regression deep learning with 3 hidden layers, a Relu activation function, 100 neurons, and a Root Mean Square Propagation optimizer (RMS Prop). The model was developed using actual data collected from 28 Egyptian cities between 2014 and 2022. The model can forecast the price of a real estate unit based on 27 different variables. The model is created in two stages: adjusting the parameters to obtain the best ones using a sensitivity k-fold technique, then optimizing the result. 85 percent of the real estate unit data gathered was used in training and developing the model, while the other 15 percent was used in validating and testing. By using a dropout regularization technique of 0.60 on the model layers, the final developed model had a maximum error of 10.58%. After validation, the model had a maximum error of about 9.50%. A graphical user interface (GUI) tool is developed to make use of the final predictive model, which is very simple for real estate developers and decision-makers to use. Doi: 10.28991/CEJ-SP2023-09-04 Full Text: PDF
Selecting the Safety and Cost Optimized Geo-Stabilization Technique for Soft Clay Slopes Kennedy C. Onyelowe; Ahmed M. Ebid; Hisham A. Mahdi; Jair A. Baldovino
Civil Engineering Journal Vol 9, No 2 (2023): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-02-015

Abstract

Slope failure poses a serious threat to the built environment as it is currently one of the fundamental contributors to climate change fears across the world, and this threatens the environmental goals of the United Nations Sustainable Development Goals (UNSDGs) for the year 2050. In this research paper, an optimized geo-stabilization numerical model has been developed with a Plaxis 2D code under safety and cost optimization considerations for a 37 m high slope embankment located on a soft clay watershed with an infinite extension. The site was prepared with four monitoring wells installed at 2.5 m, 7.5 m, 12.5 m, and 21.5 m from the foot of the slope to measure the water level conditions, and samples were collected and tested in the laboratory to determine the hydraulic and shear strength and modulus of the soil. Seven (7) different simulation alternatives were considered in terms of the model solutions to be deployed under dry and wet states, which were slope steep (angle) reduction (Alt-1), dewatering (Alt-2), jet grouting (Alt-3), jet grouting/dewatering (Alt-4), slope reduction/jet grouting (Alt-5), slope reduction/dewatering (Alt-6), and slope reduction/jet grouting/dewatering (Alt-7). The finite element model implementation of the alternatives showed that Alt-2, Alt-3, and Alt-4 had FOS of less than 1.5 and were omitted because their stability considerations did not meet the requirements for the normal operating conditions of a slope and also the short-term and long-term stability conditions according to the literature. Alternatives 1, 5, 6, and 7 with FOS above 1.5 were selected for further optimization considerations. Economic and sustainability factors were selected and considered based on the cost in line with current average market prices, constructability, reliability, and the environmental impact needed to achieve the required earthwork, jet grouting, dewatering, and selected combinations. Finally, the Alt-1 (FOS = 1.505), though not the cheapest, was selected as the optimal choice in terms of reliability, constructability, and environmental impact. However, Alt-6 (FOS = 1.520) and Alt-7 (FOS = 1.508) are the most economical but ranked low in reliability and environmental impact considerations. Doi: 10.28991/CEJ-2023-09-02-015 Full Text: PDF
Concept of an Intelligent Parking System; Efforts to Resolve Traffic Conflicts Regulations Lucky Caroles; Sakti Adji Adisasmita; Pramudyo Bayu Pamungkas
Civil Engineering Journal Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges"
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-SP2023-09-05

Abstract

Makassar, an Indonesian city, is situated on the south-western coast of Sulawesi Island. It is the largest commercial centre in eastern Indonesia, and traffic congestion is a problem there. Movement management must establish sufficient and well-organized parking areas, as well as a good and transparent system to eliminate unmonitored restitution funds, in order to address these issues. To address parking issues in Makassar, a legal and technical strategy is developed, with an emphasis on inclusiveness and including both legal and illegal parking spaces. The integrated parking concept is comprised of a mobile, everywhere-accessible parking area reservation system, a vehicle registration system based on licence plate numbers, and an effective data management system. 180 million Indonesian Rupiah are spent on all equipment and activity installations (IDR). At least 50 locations utilising this system will be required for a minimum vehicle range of 250,000 units, resulting in an approximate capital cost of 9 billion rupiah. The first clause describes the application of minimum parking fees to flat parking fees (generally 2 thousand rupiah). During a single parking period, it is anticipated that 250,000 vehicles will utilise this parking system if all parking spaces are occupied simultaneously. Government and investors can raise 250 million rupiah in investment capital assuming a 50:50 profit split. Revenue can reach billions of rupiah with just four iterations. Doi: 10.28991/CEJ-SP2023-09-05 Full Text: PDF
Assessment of Dynamic Effects of Wave Loads in Fatigue Analysis for Fixed Steel Offshore Structures Dinh Quang Cuong; Bui The Anh
Civil Engineering Journal Vol 9, No 2 (2023): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-02-016

Abstract

This paper presents an algorithm and develops a formula to evaluate the dynamic effect of wave loading on fixed steel offshore structures (jacket structures) through the fatigue damage ratio. Applying the algorithm and formula proposed in this paper to evaluate the dynamic effect of wave loads in fatigue analysis for 03 Jacket structures built at increasing water depth under one specific marine condition and provide specific recommendations on the limits of application of quasi-static and dynamic methods in the fatigue analysis of the jacket structures. This research is really necessary because currently, the current standards (API, DnV) only stop at evaluating the dynamic effects of wave loads acting on the Jacket structure in the strength analysis. These standards propose a limit for quasi-static or dynamic analysis based on the "3.0 s or 2.5 s rule" (use the quasi-static method when Tmax≤ 3.0 s or ≤ 2.5 s), and it is advised that they only apply to waters within the North Sea and the Gulf of Mexico. This paper has demonstrated that it is not appropriate to use the specified standards for the North Sea and the Gulf of Mexico to select the method of fatigue analysis of the jacket structure in marine conditions outside the study area of the standard. Hoped that this paper will be a reference for engineers when choosing a fatigue analysis method for jacket structures in specific marine conditions at the location where the jacket structure has been installed. Doi: 10.28991/CEJ-2023-09-02-016 Full Text: PDF
Reliability Assessment of Masonry Infilled RC Frame Building’s Earthquake Performance through Accidental Torsion Consideration Dalibor Burilo; Damir Markulak; Tihomir Dokšanović; Davorin Penava
Civil Engineering Journal Vol 9, No 2 (2023): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-02-017

Abstract

Accidental torsional behaviour induced by horizontal loading is difficult to predict, being a complex phenomenon governed by many variables. This problem gains an additional dimension of complexity when nonlinear responses with imperfections need to be considered. Therefore, evaluation and understanding the influence of accidental torsion are fundamental in seismic reliability estimation. This study offers vital insights based on the results of a 1/2.5 scale three-story masonry infilled reinforced concrete frame building’s test on a shaking table. The building was tested under ten consecutive ground motions with increasing ag/g, recorded at Herzeg Novi station during the 1979-M6.9 Montenegro earthquake. The accidental eccentricity, considered a random variable, resulted from unsymmetrical masonry infill wall damage in an otherwise regular building. Its effect, in relation to that of other random (design) variables, was evaluated utilising weight factors and, in addition, assessed through various building code provisions and state-of-the-art research findings. The analysis revealed that the accidental eccentricity, as compared to other random variables considered, could, under certain conditions, reach values higher than those prescribed by the building codes. This unacceptable seismic reliability clearly warns that accidental torsion of masonry-infilled reinforced concrete frames in in-situ conditions must be considered even in regular buildings. Doi: 10.28991/CEJ-2023-09-02-017 Full Text: PDF
The Analysis of Large Dam Impacts on Sediment Grain Size Distribution in a Tropical River System Mohammad Haroon Hairan; Nor Rohaizah Jamil; Mohammad Noor Amal Azmai; Ley Juen Looi; Ahmad Zaharin Aris; Mohd Hafiz Rosli
Civil Engineering Journal Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges"
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-SP2023-09-02

Abstract

Sedimentation is a natural phenomenon of rivers that is enhanced by modification of the river basin. The presence of dams delays the exchange of sediments, nutrients, and organisms between the terrestrial and aquatic environments. This article assesses the impact of the Selangor dam on the sediment grain size distribution and its association with river velocity and discharge. The fieldwork for sampling is conducted in the normal and rainy seasons. The samples were analyzed through a sieve analysis procedure to determine the particle size of the sediments. After the sieve analysis technique, GRADISTAT analysis was performed on the output. The GRADISTAT analysis classifies the sediments between sandy gravel and sand, and the median grain size (D50) ranges from 4.00 to 0.18 mm. The spatial distribution of the D50 shows that the bed-load sediments of the upper Selangor River are becoming fine-grained downstream. The skewness of the sediments differs from 0.86 to 8.44, which indicates that the sediments are poorly to moderately well sorted. The Spearman's correlation of the D50 and river velocity and discharge determine no association of the D50 with river velocity and discharge. The stations near Selangor Dam have high slopes and receive "sediment hungry" water that washes small-sized sediments; therefore, the upper stations have a more significant amount of gravel and large sand. Doi: 10.28991/CEJ-SP2023-09-02 Full Text: PDF
Evaluation of Liquefaction Potential based on Cone Penetration Test (CPT) and Semi-empirical Methods Fatima Ezzahraa Latifi; Khadija Baba; Ghizlan Ardouz; Latifa EL Bouanani
Civil Engineering Journal Vol 9, No 2 (2023): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-02-013

Abstract

The phenomenon of soil liquefaction can be an induced effect of earthquake shaking where the saturated soil loses some or all of its bearing capacity and stiffness. Likewise, the increase of water pressure in the soil pores under the seismic wave causes a decrease of the shear strength. As a result, the soil becomes liquefied and susceptible to producing permanent deformations. The phenomenon of liquefaction is generally unpredictable, and neglecting it can influence the stability of structures and infrastructure foundations. Since the 1964 Alaska and Niigata earthquakes, more research works have been conducted to assess land liquefaction vulnerability. This study is undertaken in this field, whose objective, on the one hand, is to signal the phenomenon of liquefaction in the north of Morocco as a geo-technical part known for its instability and, on the other hand, to study the semi-empirical methods to adequately evaluate the liquefaction potential while specifying the most appropriate method for our case study. Similarly, the study is based on data derived from experimental results of in-situ tests applied to the embankment crossing the valley of "Oued Gharifa" on a high-speed rail line section from KP 228+400 to KP 229+375. Moreover, this research aims to show and discuss the evaluation of liquefaction potential of the experimental results of the CPT (cone penetration test) using three semi-empirical methods, namely the Juang method, the Olsen method, and the Robertson method. In doing so, we are going to compare the application results of the three semi-empirical methods in light of evaluating the liquefaction likelihood of the studied area, taking into account the nature of the soil, the variation of the safety coefficient, and the liquefaction potential for each method as well. Doi: 10.28991/CEJ-2023-09-02-013 Full Text: PDF
Punching Capacity of UHPC Post Tensioned Flat Slabs with and Without Shear Reinforcement: An Experimental Study Ahmed Afifi; Mohamed Ramadan; Ahmed M. Farghal Maree; Ahmed M. Ebid; Amr H. Zaher; Dina M. Ors
Civil Engineering Journal Vol 9, No 3 (2023): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-03-06

Abstract

Punching capacity is one of the main items in the design of both pre-stressed and non-pre-stressed flat slabs. All international design codes include provisions to prevent this type of failure. Unfortunately, there is no code provision for UHPC yet, and hence, the aim of this research is to experimentally investigate the impact of column dimensions and punching reinforcement on the punching capacity of post-tensioned slabs and compare the results with the international design codes’ provisions to evaluate its validity. The test program included five slabs with a compressive strength of 120 MPa: one as a control sample, two to study the effect of column size, and the last two to study the effect of punching reinforcement. Comparing the results with the design codes showed that ACI-318 is more accurate with an average deviation of about 5%, while EC2 is more conservative with an average deviation of about 20%. Besides that, punching reinforcement reduces the size of the punching wedge by increasing the crack angle to 28° instead of 22° for slabs without punching reinforcement. Also, the results assure that both ductility and stiffness are enhanced with the increased column dimensions and punching reinforcement ratio. Doi: 10.28991/CEJ-2023-09-03-06 Full Text: PDF

Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol. 10 No. 5 (2024): May Vol 10, No 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue