cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Chemistry
ISSN : 14119420     EISSN : 24601578     DOI : -
Indonesian Journal of Chemistry is an International, peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry including applied chemistry. The journal is accredited by The Ministry of Research, Technology and Higher Education (RISTEKDIKTI) No : 21/E/KPT/2018 (in First Rank) and indexed in Scopus since 2012. Since 2018 (Volume 18), Indonesian Journal of Chemistry publish four issues (numbers) annually (February, May, August and November).
Arjuna Subject : -
Articles 1,956 Documents
Thermal and Structure Analysis Based on Exfoliation of Clay in Thermosensitive Polymer by in-situ Polymerization Marwah Noori Mohammed; Kamal Yusoh; Jun Haslinda binti Haji Sharifuddin
Indonesian Journal of Chemistry Vol 20, No 1 (2020)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (367.459 KB) | DOI: 10.22146/ijc.40872

Abstract

Poly(N-vinylcaprolactam) (PNVCL) offers superior characteristics as a thermoresponsive polymer for various potential applications. An attractive procedure, namely in-situ polymerization, was used to prepare NVCL/clay nanocomposite in different clay ratios. Organo-modified clay as C20 and B30 were employed in a range between 1–5% based on weight. Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) were used to study thermal decomposition and to assess bond conversion during polymerization of the nanocomposite. This research was conducted to study PNVCL characteristics with the addition of clay as a nanocomposite. The stretch mode of the carboxylic group (C=O) and (C=C) was present in the band range about ~1635 cm–1 for the C20, but it was ranging between 1640 to 1664 cm–1 for the B30 of the nanocomposite. It was observed that the decomposition was different for each type of organoclay and the temperature peaked at 30 to 800 °C, to measure the degradation points at 5, 10, and 50%. Comparison results for FTIR and TGA showed that the best nanocomposite was found in the C20 (3%) case.
Tropical Tannin for Engineering Application Nor Adzwa Binti Rosli; Wan Asma Ibrahim; Zulkafli Hassan; Azizul Helmi Bin Sofian
Indonesian Journal of Chemistry Vol 20, No 1 (2020)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (7.74 KB) | DOI: 10.22146/ijc.40877

Abstract

In this study, some approaches have been proposed to establish an alternative and option of brand-new compounds by using green sources that can minimize the environmental threat in the engineering application industry. Tannin, a chemical component extracted from plant origin, has the potential to bind with proteins and other polymers. The description of tannin can be amplified to cover a complete mass of constituents which give typical phenolic reactions, and hence, it has the properties to interact with the aqueous solution. The potential of tannin to associate allows its usability in the oil and gas industry. The aim of this review in this particular context will be emphasized the use of tannin in the implementation of drilling fluid, mercury removal, wastewater treatment, and corrosion inhibitor.
Poly(Lactic Acid) (PLA)/Acrylonitrile Butadiene Styrene (ABS) with Graphene Nanoplatelet (GNP) Nanocomposites Mohd Bijarimi; Noor Shahadah; Azizan Ramli; Said Nurdin; Waleed Alhadadi; Muhammad Zakir Muzakkar; Jamiluddin Jaafar
Indonesian Journal of Chemistry Vol 20, No 2 (2020)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (622.973 KB) | DOI: 10.22146/ijc.40880

Abstract

A melt blending of poly(lactic acid) (PLA)/acrylonitrile-butadiene-styrene (ABS) with 30:70 PLA:ABS was prepared by a twin screw extruder with a die of 25 mm width and 0.5 mm thickness with various loadings of graphene (0–1.0 wt.%). The PLA/ABS blends were evaluated by mechanical, morphology, thermal and interaction of the components of the blend. Results show the incorporation of graphene nanoplatelet (GNP) improved the tensile and modulus properties. Nevertheless, it was observed that at higher GNP loadings i.e. 0.6–1.0 wt.%, both tensile and modulus properties showed a decreasing trend. It was also found that the thermal stability for the blend slightly improved when graphene presence in the blend.
Formulation of Emulsified Modification Bitumen from Industrial Wastes Mohd Najib Razali; Syarifah Nur Ezatie Mohd Isa; Noor Adilah Md Salehan; Musfafikri Musa; Mohd Aizudin Abd Aziz; Abdurahman Hamid Nour; Rosli Mohd Yunus
Indonesian Journal of Chemistry Vol 20, No 1 (2020)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (249.721 KB) | DOI: 10.22146/ijc.40888

Abstract

The aim of this research was to characterize and analyze the formulation of emulsified modification bitumen (EMB) as well as the industrial wastes used in the formulation. Bitumen being a non-renewable product with severe environmental issues arising lately led to the use of industrial wastes such as plastic and recycled base oil in this research. Physical characteristic studies were performed to analyze the decomposition temperature, boiling point, flash point, density, moisture content, element content in waste plastics, and flowability of bitumen emulsion. Eight ratios of modified bitumen were formulated and compared with the industrial grade bitumen. The modified bitumen with a penetration value of 103 mm and softening value at 49 °C was chosen for the emulsification process where three emulsifiers were added into the mixture of bitumen and water. These samples were compared with the industrial bitumen emulsion. From the analysis, the formulated emulsion was obtained from a mixture consists of 20% bitumen, 7% polymer, and 73% recycled base oil.
Chemical Reduction Behavior of Zirconia Doped to Nickel at Different Temperature in Carbon Monoxide Atmosphere Norliza Dzakaria; Maratun Najiha Abu Tahari; Fairous Salleh; Alinda Samsuri; Masitah Abdul Halim Azizi; Tengku Shafazila Tengku Saharuddin; Muhammad Rahimi Yusop; Wan Nor Roslam Wan Isahak; Mohamed Wahab Mohamed Hisham; Mohd Ambar Yarmo
Indonesian Journal of Chemistry Vol 20, No 1 (2020)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (932.319 KB) | DOI: 10.22146/ijc.40891

Abstract

The reduction behavior of nickel oxide (NiO) and zirconia (Zr) doped NiO (Zr/NiO) was investigated using temperature programmed reduction (TPR) using carbon monoxide (CO) as a reductant and then characterized using X-ray diffraction (XRD), nitrogen absorption isotherm using BET technique and FESEM-EDX. The reduction characteristics of NiO to Ni were examined up to temperature 700 °C and continued with isothermal reduction by 40 vol. % CO in nitrogen. The studies show that the TPR profile of doped NiO slightly shifts to a higher temperature as compared to the undoped NiO which begins at 387 °C and maximum at 461 °C. The interaction between ZrO2 with Ni leads to this slightly increase by 21 to 56 °C of the reduction temperature. Analysis using XRD confirmed, the increasing percentage of Zr from 5 to 15% speed up the reducibility of NiO to Ni at temperature 550 °C. At this temperature, undoped NiO and 5% Zr/NiO still show some crystallinity present of NiO, but 15% Zr/NiO shows no NiO in crystalline form. Based on the results of physical properties, the surface area for 5% Zr/NiO and 15% Zr/NiO was slightly increased from 6.6 to 16.7 m2/g compared to undoped NiO and for FESEM-EDX, the particles size also increased after doped with Zr on to NiO where 5% Zr/NiO particles were 110 ± 5 nm and 15% Zr/NiO 140 ± 2 nm. This confirmed that the addition of Zr to NiO has a remarkable chemical effect on complete reduction NiO to Ni at low reduction temperature (550 °C). This might be due to the formation of intermetallic between Zr/NiO which have new chemical and physical properties.
Effect of Steam Treatment on the Characteristics of Oil Palm Empty Fruit Bunch and Its Biocomposite Abdul Muttalib Bin Bujang; Noor Ida Amalina Binti Ahamad Nordin
Indonesian Journal of Chemistry Vol 20, No 2 (2020)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (308.041 KB) | DOI: 10.22146/ijc.40906

Abstract

Oil palm empty fruit bunch (EFB) has a big potential in biocomposite production. The porous surface of EFB is advantageous for physical interlocking with polymer in composite fabrication. The objective of this study is to determine the properties of biocomposite prepared from steam-treated EFB with polypropylene (PP). The EFB was treated using steam at 120 °C for 30 min (Steam-30) and 60 min (Steam-60) in an autoclave. The biocomposite was prepared from EFB and PP at different fiber contents (10 and 30 wt.%). The Steam-30 EFB partially removed silica bodies and other impurities without damaging the surface of the EFB. The thermal stability improved from 276 to 283 °C. The Steam-30/PP biocomposite had the highest tensile strength at 10 and 30 wt.% EFB contents with the increments of 23.9 and 23.8%, respectively, compared to that of the untreated EFB/PP biocomposite. The Steam-30/PP biocomposite containing 30 wt.% of EFB had a low water absorption of 5.6% compared to that of the untreated EFB/PP biocomposite at 7.2%. In conclusion, steam treatment improved the characteristics of EFB and increased the compatibility between the fiber and polymer.
Removal of Methylene Blue from Aqueous Solution by Using Electrical Arc Furnace (EAF) Slag Suhanna Natalya Mohd Suhaimy; Luqman Chuah Abdullah
Indonesian Journal of Chemistry Vol 20, No 1 (2020)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (263.04 KB) | DOI: 10.22146/ijc.40910

Abstract

In recent years, environmental protection has gained a major concern. In line with the rapid growth of various industries, high amount of effluent has been generated and discharged to the environment. One of the concerns is the presence of synthetic dye in the wastewater stream, as it may endanger human and aquatic life. In this experiment, the Electrical Arc Furnace (EAF) slag has been used as an adsorbent to remove methylene blue from the aqueous solution. Batch experiments have been conducted, and the effects of initial dye concentration, pH, adsorbent dosage and temperature were studied respectively. Chemical treatment has been performed to modify the adsorbent. The results reveal that treated EAF Slag has higher efficiency in removing methylene blue compared to raw EAF slag. More pores have been exposed, and impurities on the adsorbent’s surface have been removed, to enhance better removal efficiency. The maximum adsorption capacity for treated EAF is 14.2029 mg/g and for raw EAF Slag is 9.615 mg/g. The maximum removal percentage for treated EAF Slag is 71.01%, whereas raw EAF shows 37.19% removal at pH 10. Both raw EAF Slag and treated EAF slag fits the data for the Langmuir isotherm model which obeys the monolayer adsorption process.
Physicochemical Characterization and Controlled Release Formulation on Intercalated 2-Methyl-4-chlorophenoxy Acetic Acid-Graphite Oxide (MCPA-GO) Nanocomposite Norilyani Izzati Hasanuddin; Nur Nadia Dzulkifli; Siti Halimah Sarijo; Sheikh Ahmad Izaddin Sheikh Mohd Ghazali
Indonesian Journal of Chemistry Vol 20, No 2 (2020)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (305.538 KB) | DOI: 10.22146/ijc.40921

Abstract

In this present work, herbicide named 2-methyl-4-chlorophenoxy acetic acid (MCPA) was intercalated into the graphite oxide through ion-exchange method to produce a MCPA-GO nanocomposite as an herbicide delivery system. The formation of MCPA-GO nanocomposite was confirmed by using PXRD, Fourier Transform Infrared Spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA), UV-Visible Spectroscopy and Accelerated Surface Area Surface (ASAP). As for PXRD pattern, there was increasing in the basal spacing of the nanocomposite from the graphite oxide which by 9.3 Å to 9.7 Å indicated that MCPA has succesfully inserted into the interlayers of the graphite oxide. Meanwhile, FTIR spectrum shown the appearance of a new peak in MCPA-GO nanocomposite at 1308 cm-1 represent the functional group of carboxylate (COO-).  This peak is very necessary for the confirmation of anionic form of MCPA inserted into the interlayers of graphite oxide. The controlled release property was also done for further investigation by using various aqueous medias to determine the percentage release of MCPA from the nanocomposite. The percentage of herbicide release in Na3PO3 solution was higher than in Na2CO3 and NaCl solution, proved that the release properties exhibits the potential application of graphite oxide as effective nanocarrier of herbicides. MCPA-GO nanocomposite suggested to be most promising herbicide since it can lower the toxicity of precursor MCPA, high biocompability, and more efficient in herbicide delivery system.
α-Glucosidase Inhibitory and A Leptospermone Derivative from Rhodomyrtus tomentosa Ferlinahayati Ferlinahayati; Daniel Alfarado; Eliza Eliza; Budi Untari
Indonesian Journal of Chemistry Vol 20, No 2 (2020)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (19.288 KB) | DOI: 10.22146/ijc.40990

Abstract

One of the treatments for diabetes mellitus disease is to control blood sugar level using an inhibitor of α-glucosidase enzyme. The methanol extracts of the fruit, stem, and leaves of Rhodomyrtus tomentosa were found significant in inhibiting α-glucosidase with an IC50 value of 20.57, 20.36 and 43.99 μg/mL respectively. The ethyl acetate and n-butanol fractions from the methanol extract of R. tomentosa fruit exhibited the potent inhibition (IC50 13.49 and 19.29 μg/mL) compare to acarbose and n-hexane fraction (IC50 383.68 and 1175.16 μg/mL). A leptospermone derivative, rhodomyrtosone D, was isolated from the ethyl acetate fraction of R. tomentosa fruit. The structure of rhodomyrtosone D was identified based on spectroscopic analysis, as well as comparing with literature data. The α-glucosidase inhibition of rhodomyrtosone D (IC50 110.45 μg/mL) was 3.5 fold more potent than acarbose. Thus, R. tomentosa plant could be potential as a natural resource of α-glucosidase inhibitor.
Levan Produced by the Halophilic Bacterium Bacillus licheniformis BK1 as a Nanoparticle for Protein Immobilization Ira Oktavia; Aidah Nur Fithriah; Nur Umriani Permatasari; Enny Ratnaningsih; Rukman Hertadi
Indonesian Journal of Chemistry Vol 20, No 3 (2020)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1264.164 KB) | DOI: 10.22146/ijc.41064

Abstract

This study examined the potential of levan from the halophilic bacterium Bacillus licheniformis BK1 as a nanoparticle system for protein immobilization. Levan produced by B. licheniformis BK1 was obtained by incubating the bacterium in the optimized Belghith medium, containing 15% (w/v) sucrose, 7.5% (w/v) NaCl and pH 8, in a rotary shaker at 150 rpm for 16 h, at 40 °C. The structure of the levan produced was verified by FTIR and NMR. It appeared that the levan had the same structure as that from Erwinia herbicola. The obtained levan was then used as a nanoparticle system to immobilize BSA and lysozyme proteins. The BSA-nanoparticle had a non-spherical shape with a surface charge of about -4.72 mV and a size distribution in the range of 83–298 nm. In contrast, the lysozyme-nanoparticle exhibited more spherical shapes with a surface charge of -2.57 mV and 206–285 nm size distribution. The efficiency of immobilization was about 74.26% and 81.77% for BSA and lysozyme, respectively. The study thus shows that levan produced by B. licheniformis BK1 can be used as a nanoparticle system for protein immobilization.

Filter by Year

2001 2025


Filter By Issues
All Issue Vol 25, No 5 (2025) Vol 25, No 4 (2025) Vol 25, No 3 (2025) Vol 25, No 2 (2025) Vol 25, No 1 (2025) Vol 24, No 6 (2024) Vol 24, No 5 (2024) Vol 24, No 4 (2024) Vol 24, No 3 (2024) Vol 24, No 2 (2024) Vol 24, No 1 (2024) Vol 23, No 6 (2023) Vol 23, No 5 (2023) Vol 23, No 4 (2023) Vol 23, No 3 (2023) Vol 23, No 2 (2023) Vol 23, No 1 (2023) Vol 22, No 6 (2022) Vol 22, No 5 (2022) Vol 22, No 4 (2022) Vol 22, No 3 (2022) Vol 22, No 1 (2022) Vol 22, No 2 (2022) Vol 21, No 6 (2021) Vol 21, No 5 (2021) Vol 21, No 4 (2021) Vol 21, No 3 (2021) Vol 21, No 2 (2021) Vol 21, No 1 (2021) Vol 20, No 6 (2020) Vol 20, No 5 (2020) Vol 20, No 4 (2020) Vol 20, No 3 (2020) Vol 20, No 2 (2020) Vol 20, No 1 (2020) Vol 19, No 4 (2019) Vol 19, No 3 (2019) Vol 19, No 2 (2019) Vol 19, No 1 (2019) Vol 18, No 4 (2018) Vol 18, No 3 (2018) Vol 18, No 2 (2018) Vol 18, No 1 (2018) Vol 17, No 3 (2017) Vol 17, No 2 (2017) Vol 17, No 1 (2017) Vol 16, No 3 (2016) Vol 16, No 2 (2016) Vol 16, No 1 (2016) Vol 15, No 3 (2015) Vol 15, No 2 (2015) Vol 15, No 1 (2015) Vol 14, No 3 (2014) Vol 14, No 2 (2014) Vol 14, No 1 (2014) Vol 13, No 3 (2013) Vol 13, No 2 (2013) Vol 13, No 1 (2013) Vol 12, No 3 (2012) Vol 12, No 2 (2012) Vol 12, No 1 (2012) Vol 11, No 3 (2011) Vol 11, No 2 (2011) Vol 11, No 1 (2011) Vol 10, No 3 (2010) Vol 10, No 2 (2010) Vol 10, No 1 (2010) Vol 9, No 3 (2009) Vol 9, No 2 (2009) Vol 9, No 1 (2009) Vol 8, No 3 (2008) Vol 8, No 2 (2008) Vol 8, No 1 (2008) Vol 7, No 3 (2007) Vol 7, No 2 (2007) Vol 7, No 1 (2007) Vol 6, No 3 (2006) Vol 6, No 2 (2006) Vol 6, No 1 (2006) Vol 5, No 3 (2005) Vol 5, No 2 (2005) Vol 5, No 1 (2005) Vol 4, No 3 (2004) Vol 4, No 2 (2004) Vol 4, No 1 (2004) Vol 3, No 3 (2003) Vol 3, No 2 (2003) Vol 3, No 1 (2003) Vol 2, No 3 (2002) Vol 2, No 2 (2002) Vol 2, No 1 (2002) Vol 1, No 3 (2001) Vol 1, No 2 (2001) Vol 1, No 1 (2001) Article in press ARTICLE IN PRESS More Issue