cover
Contact Name
-
Contact Email
lppm@univbinainsan.ac.id
Phone
+6281367729051
Journal Mail Official
lppm@univbinainsan.ac.id
Editorial Address
Jalan Jendral Besar H.M Soeharto KM 13 Kelurahan Lubuk Kupang, Kecamatan Lubuklinggau Selatan I Kota Lubuklinggau, Provinsi Sumtera Selatan
Location
Kota lubuk linggau,
Sumatera selatan
INDONESIA
Jusikom : Jurnal Sistem Komputer Musirawas
ISSN : 25411896     EISSN : 26148714     DOI : https://doi.org/10.32767/jusikom.v9i1
Core Subject : Science,
JUSIKOM is a place of information in the form of research results, literature studies, ideas, application of theory and critical analysis studies in the fields of research in the fields of Computer Systems, Computer Science, and Electronics. Focus and Scope: Embedded system, Intelligent control system, Software engineering, Computer network, Mobile computing, Artificial Intelligent, Internet of Things, and Information system.
Articles 212 Documents
PENERAPAN ALGORITMA K-NEAREST NEIGHBOR UNTUK KLASIFIKASI TINGKAT KEMATANGAN BUAH ALPUKAT BERDASARKAN WARNA susanti, tri; Sasmita, Sasmita
Jusikom : Jurnal Sistem Komputer Musirawas Vol 10 No 1 (2025): Jusikom : Jurnal Sistem Komputer Musirawas JUNI
Publisher : LPPM UNIVERSITAS BINA INSAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32767/jusikom.v10i1.2603

Abstract

This research develops an avocado fruit ripeness classification system using the K-Nearest Neighbor algorithm based on color feature extraction. Data was collected from 150 Mentega variety avocado samples with three ripeness categories: unripe, semi-ripe, and ripe. The classification process involved image preprocessing, extraction of RGB and HSV color components, and implementation of the KNN algorithm. Results showed the highest accuracy of 95.56% at k=9 using Euclidean Distance metric, with Mean R and Mean H components having the strongest correlation to avocado ripeness levels. The system was successfully implemented with a user-friendly graphical interface, enabling automatic classification with a processing time of 1.2 seconds per image. Compared to other classification methods such as Random Forest and SVM, KNN showed the best performance in modeling avocado color features, offering an effective and efficient solution for the Pagar Alam City Agriculture Department in determining avocado fruit ripeness levels.
PERANCANGAN APLIKASI PENGOLAHAN DATA PENERIMAAN DAN PENGELUARAN KAS PADA PT. PERTAMINA DRILLING SERVICES INDONESIA (PT. PDSI) Carolina, Falentine; Wijaya, Khana; Suparianto, Rishi
Jusikom : Jurnal Sistem Komputer Musirawas Vol 10 No 1 (2025): Jusikom : Jurnal Sistem Komputer Musirawas JUNI
Publisher : LPPM UNIVERSITAS BINA INSAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32767/jusikom.v10i1.2712

Abstract

PT. Pertamina Drilling Services Indonesia (PT. PDSI) is a company that operates in the oil drilling industry and is located at Jalan Jenderal Sudirman No. 03, Prabumulih, South Sumatra. The company has been using Microsoft Excel to record its cash inflows and outflows. However, this method is still prone to errors in data processing, which makes the financial reports less accurate. This research aims to develop a website-based application to make the cash reporting process easier, more accurate, and more efficient. The method used in this research is descriptive and qualitative, including observation, interviews, and literature study. The data comes from both primary and secondary sources. The application is developed using the Rapid Application Development (RAD) method. System design tools such as use case diagrams, class diagrams, and activity diagrams are used. The application is built using PHP and MySQL. With this application, it is expected that PT. Pertamina Drilling Services Indonesia (PT. PDSI) Rig Operation II can manage its cash data more efficiently, and that the company’s leaders can more easily review the financial information.

Filter by Year

2016 2025


Filter By Issues
All Issue Vol 10 No 1 (2025): Jusikom : Jurnal Sistem Komputer Musirawas JUNI Vol 9 No 2 (2024): Jusikom : Jurnal Sistem Komputer Musirawas DESEMBER Vol 9 No 1 (2024): Jusikom : Jurnal Sistem Komputer Musirawas JUNI Vol 8 No 2 (2023): Jusikom : Jurnal Sistem Komputer Musi Rawas DESEMBER Vol 8 No 1 (2023): Jusikom : Jurnal Sistem Komputer Musirawas JUNI Vol 7 No 2 (2022): Jusikom : Jurnal Sistem Komputer Musirawas DESEMBER Vol 7 No 1 (2022): Jusikom : Jurnal Sistem Komputer Musirawas JUNI Vol 6 No 2 (2021): Jusikom : Jurnal Sistem Komputer Musirawas DESEMBER Vol 6 No 1 (2021): Jusikom : Jurnal Sistem Komputer Musirawas JUNI Vol 5 No 2 (2020): Jusikom : Jurnal Sistem Komputer Musirawas DESEMBER Vol 5 No 1 (2020): Jusikom : Jurnal Sistem Komputer Musirawas JUNI Vol 4 No 2 (2019): Jusikom : Jurnal Sistem Komputer Musirawas DESEMBER Vol 4 No 1 (2019): Jusikom : Jurnal Sistem Komputer Musirawas JUNI Vol 4 No 1 (2019): Jusikom : Jurnal Sistem Komputer Musirawas JUNI Vol 3 No 2 (2018): Jusikom : Jurnal Sistem Komputer Musirawas DESEMBER Vol 3 No 2 (2018): Jusikom : Jurnal Sistem Komputer Musirawas DESEMBER Vol 3, No 1 (2018): JURNAL SISTEM KOMPUTER MUSIRAWAS (JUSIKOM) JUNI Vol 3 No 1 (2018): Jusikom : Jurnal Sistem Komputer Musirawas JUNI Vol 3 No 1 (2018): Jusikom : Jurnal Sistem Komputer Musirawas JUNI Vol 2 No 2 (2017): Jusikom : Jurnal Sistem Komputer Musirawas DESEMBER Vol 2 No 2 (2017): Jusikom : Jurnal Sistem Komputer Musirawas DESEMBER Vol 2, No 2 (2017): JURNAL SISTEM KOMPUTER MUSIRAWAS (JUSIKOM) DESEMBER Vol 2 No 1 (2017): Jusikom : Jurnal Sistem Komputer Musirawas JUNI Vol 2, No 1 (2017): JURNAL SISTEM KOMPUTER MUSIRAWAS (JUSIKOM) JUNI Vol 2 No 1 (2017): Jusikom : Jurnal Sistem Komputer Musirawas JUNI Vol 1 No 1 (2016): Jusikom : Jurnal Sistem Komputer Musirawas DESEMBER Vol 1, No 1 (2016): JURNAL SISTEM KOMPUTER MUSIRAWAS (JUSIKOM) DESEMBER Vol 1 No 1 (2016): Jusikom : Jurnal Sistem Komputer Musirawas DESEMBER More Issue