cover
Contact Name
Jamaluddin
Contact Email
jamaluddin@methodist.ac.id
Phone
+6281397181985
Journal Mail Official
jamaluddin@methodist.ac.id
Editorial Address
Jl. Hang Tuah No. 8 Medan Sumatera Utara - Indonesia Kode Pos: 20152
Location
Kota medan,
Sumatera utara
INDONESIA
METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi
ISSN : 25988565     EISSN : 26204339     DOI : 10.46880
Core Subject : Economy, Science,
Sistem Informasi Sistem Informasi Manajemen Sistem Informasi Akuntansi Manajemen Basis Data Pengembangan Aplikasi Web dan Mobile Sistem Pendukung Keputusan Desain Grafis dan Multimedia Audit Sistem Informasi Topik-topik lain yang Relevan dengan bidang ilmu Manajemen Informatika Topik-topik lain yang Relevan dengan bidang ilmu Kompuerisasi Akuntansi
Articles 342 Documents
Klasifikasi Pola Konsumsi Energi Rumah Tangga Menggunakan Algoritma Machine Learning untuk Mendukung Implementasi Smart City Alfina, Ommi; M. Safii
METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi Vol. 9 No. 2 (2025): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi
Publisher : Universitas Methodist Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Population growth in urban areas drives a significant increase in household energy consumption. This condition poses a major challenge for the implementation of the smart city concept, particularly in achieving energy efficiency and sustainability. This study aims to classify household energy consumption patterns based on household power consumption data to support intelligent decision-making in urban energy management. The research method includes data preprocessing, data cleaning, and aggregation of daily energy consumption by utilizing key attributes such as Global Active Power, Voltage, Global Intensity, and three sub-metering variables. Consumption pattern categories are formed using the tertile method into three classes: Low, Medium, and High. Several machine learning algorithms are applied to build the classification model, including Logistic Regression, K-Nearest Neighbors (KNN), Random Forest, and Gradient Boosting. The test results show that the Random Forest model with hyperparameter adjustments produces the best performance with an accuracy value of 0.98 and an F1-macro value of 0.98, surpassing other models. These findings indicate that the ensemble learning approach is able to capture the complexity of household energy consumption patterns more effectively than conventional linear models. The contribution of this research lies in the development of a machine learning-based predictive model to support adaptive energy consumption monitoring and control systems in smart city implementations.
Penerapan Algoritma K-Nearest Neighbors dalam Mengklasifikasi Penyakit Multiple Sclerosis Sitompul, Andrew Efraim Nicholas; Margaretha Yohanna; Arina Prima Silalahi
METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi Vol. 9 No. 2 (2025): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi
Publisher : Universitas Methodist Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The central nervous system is impacted by multiple sclerosis (MS), a chronic autoimmune disease that requires early identification for successful treatment. Because of its many symptoms and similarities to other neurological disorders, MS can be difficult to diagnose. Artificial intelligence techniques like the K-Nearest Neighbors (KNN) algorithm can be used to help with quicker and more precise classification in order to solve this problem. The goal of this study is to classify MS using the KNN technique and assess how well it performs in this regard. The Kaggle platform provided the dataset, which consists of 273 patient records with 18 clinical characteristics. With k = 3 as the number of neighbors, the data was split into 80% for training and 20% for testing. The Python programming language was used to implement the classification procedure. According to the findings, the KNN algorithm classified MS with an accuracy of 81.82%. The precision, recall, and f1-score for class 1 were 0.83, 0.76, and 0.79, respectively, according to additional analysis utilizing a classification report, whereas the scores for class 2 were 0.81, 0.87, and 0.84. These findings suggest that the KNN method has the potential to serve as a supportive tool in the diagnosis of Multiple Sclerosis.

Filter by Year

2017 2025


Filter By Issues
All Issue Vol. 9 No. 2 (2025): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi Vol. 9 No. 1 (2025): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi Vol. 8 No. 2 (2024): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi Vol. 8 No. 1 (2024): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi Vol. 7 No. 2 (2023): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi Vol. 7 No. 1 (2023): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi Vol. 6 No. 2 (2022): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi Vol. 6 No. 1 (2022): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi Vol. 5 No. 2 (2021): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi Vol. 5 No. 1 (2021): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi Vol. 4 No. 2 (2020): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi Vol. 4 No. 1 (2020): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi Vol. 3 No. 2 (2019): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi Vol. 3 No. 1 (2019): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi Vol. 2 No. 2 (2018): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi Vol. 2 No. 1 (2018): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi Vol. 1 No. 1 (2017): METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi More Issue