cover
Contact Name
Ni Made Satvika Iswari
Contact Email
satvika@umn.ac.id
Phone
-
Journal Mail Official
ultimainfosys@umn.ac.id
Editorial Address
-
Location
Kota tangerang,
Banten
INDONESIA
International Journal of New Media Technology
ISSN : 23550082     EISSN : 25811851     DOI : -
International Journal of New Media Technology (IJNMT) is a scholarly open access, peer-reviewed, and interdisciplinary journal focusing on theories, methods, and implementations of new media technology. IJNMT is published annually by Faculty of Engineering and Informatics, Universitas Multimedia Nusantara in cooperation with UMN Press. Topics include, but not limited to digital technology for creative industry, infrastructure technology, computing communication and networking, signal and image processing, intelligent system, control and embedded system, mobile and web based system, robotics.
Arjuna Subject : -
Articles 164 Documents
Data Quality Issues : Case Study of Claim and Insured in Indonesia Insurance Company Solontio, Chris; Hidayanto, Achmad Nizar
IJNMT (International Journal of New Media Technology) Vol 11 No 2 (2024): Vol 11 No 2 (2024): IJNMT (International Journal of New Media Technology)
Publisher : Universitas Multimedia Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31937/ijnmt.v11i2.3755

Abstract

Data has become an asset for insurance companies that have many benefits and management needs to realize the importance of data quality to avoid the impact of poor data quality. In this study, data quality measurement will be carried out by observation to see the total amount of invalid data from data dimensions, namely, accuracy, completeness and consistency of the relationship between claim data and insured, and findings from each data fields in this case study. In addition, researchers conducted interviews to find out the obstacles faced by IT, Customer Retention, Operational, and Actuary teams where they are directly related to data flow and data processing. From the results of the analysis, there is invalid data that will affect the analysis and cause obstacles faced by users according to the interview results. In the conclusion, management needs to form a data govenance team to avoid poor data quality that has responsibility for data flow and maintains data quality in order to provide a positive impact such as providing the right data accuracy in data analysis and user time to be more effective in data processing, assisting in making data warehouses, applying AI and digital transformation as a form of improvement in the services provided.
Evaluating the Impact of Particle Swarm Optimization Based Feature Selection on Support Vector Machine Performance in Coral Reef Health Classification Bastiaans, Jessica Carmelita; Hartojo, James; Pramunendar, Ricardus Anggi; Andono, Pulung Nurtantio
IJNMT (International Journal of New Media Technology) Vol 11 No 2 (2024): Vol 11 No 2 (2024): IJNMT (International Journal of New Media Technology)
Publisher : Universitas Multimedia Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31937/ijnmt.v11i2.3761

Abstract

This research explores improving coral reef image classification accuracy by combining Histogram of Oriented Gradients (HOG) feature extraction, image classification with Support Vector Machine (SVM), and feature selection with Particle Swarm Optimization (PSO). Given the ecological importance of coral reefs and the threats they face, accurate classification of coral reef health is essential for conservation efforts. This study used healthy, whitish, and dead coral reef datasets divided into training, validation, and test data. The proposed approach successfully improved the classification accuracy significantly, reaching 85.44% with the SVM model optimized by PSO, compared to 79.11% in the original SVM model. PSO not only improves accuracy but also reduces running time, demonstrating its effectiveness and computational efficiency. The results of this study highlight the potential of PSO in optimizing machine learning models, especially in complex image classification tasks. While the results obtained are promising, the study acknowledges several limitations, including the need for further validation with larger and more diverse datasets to ensure model robustness and generalizability. This research contributes to the field of marine ecology by providing a more accurate and efficient coral reef classification method, which can be applied to other image classifications.
Enhancing Support Vector Machine Classification of Nutrient Deficiency in Rice Plants Through Particle Swarm Optimization-Based Feature Selection Hartojo, James; Bastiaans, Jessica Carmelita; Pramunendar, Ricardus Anggi; Andono, Pulung Nurtantio
IJNMT (International Journal of New Media Technology) Vol 11 No 2 (2024): Vol 11 No 2 (2024): IJNMT (International Journal of New Media Technology)
Publisher : Universitas Multimedia Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31937/ijnmt.v11i2.3762

Abstract

The research focuses on the classification of nutrient deficiencies in rice plant leaves using a combination of Support Vector Machine (SVM) and Particle Swarm Optimization (PSO) methods for feature selection. Image features are extracted using Histogram of Oriented Gradients (HOG), which is then optimized with PSO to select the most relevant features in the classification process. Indonesia is one of the largest rice producers in the world, with food security as a major issue that requires sustainable solutions, especially in the agricultural sector. The growth and yield of rice plants are highly dependent on the availability of nutrients such as Nitrogen (N), Phosphorus (P), and Potassium (K). However, traditional observation methods to detect nutrient deficiencies in plants become inefficient as the scale of production increases. The dataset used includes images of rice leaves showing nitrogen (N), phosphorus (P), and potassium (K) deficiencies. Experiments show that the SVM model optimized with PSO provides a classification accuracy of 83.19% and a runtime of 129.63 seconds with 1150 best feature combinations out of 2303 extracted features, which is higher accuracy and faster runtime than the model that does not use PSO. These results show that the integration of PSO in the feature selection process not only improves the accuracy of the model, but also reduces the required computation time. This research makes an important contribution to the development of an automated system for the classification of nutrient deficiencies in crops, which can be implemented in large farms or other agricultural fields.
Cross-Platform Mobile Based Crowdsourcing Application for Sentiment Labeling Using Gamification Method Elaine, Elaine; Putri, Farica Perdana; Suryadibrata, Alethea
IJNMT (International Journal of New Media Technology) Vol 11 No 2 (2024): Vol 11 No 2 (2024): IJNMT (International Journal of New Media Technology)
Publisher : Universitas Multimedia Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31937/ijnmt.v11i2.3935

Abstract

Sentiment analysis is the application of natural language processing which aims to identify the sentiment of texts. To carry out sentiment analysis, data which has been labeled sentiment is needed to be included in the training model. Crowdsourcing is considered as the most optimal method to label data because it has a high level of accuracy at a relatively low cost. However, the use of crowdsourcing platforms has its own challenge, which is to increase user interest and motivation. A solution which can be applied is to design and build a crowdsourcing platform or application using the gamification method. The definition of gamification is an effort to increase one's intrinsic motivation for an activity by applying game elements to it. Therefore, a cross-platform mobile based crowdsourcing application for sentiment labeling using gamification method was carried out. The gamification design process was done based on the 6D framework and the application was developed using the Ionic-React framework. Application was examined through black box testing and the result showed that the application was functioning properly and according to the design requirements. There was also an evaluation carried out by distributing Intrinsic Motivation Inventory questionnaires to users who had used the application for 2 weeks. From a total of 40 respondents, the result showed that the level of user motivation and interest in using the application was high with a percentage of 83.10%.