cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
Jl. Imam Bardjo, No 4 Semarang 50241 INDONESIA
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
Published by Universitas Diponegoro
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.14710/ijred
Core Subject : Science,
The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass, Wind energy technology, Material science and technology, Low energy Architecture, Geothermal energy, Wave and Tidal energy, Hydro power, Hydrogen Production Technology, Energy Policy, Socio-economic on energy, Energy efficiency and management The journal was first introduced in February 2012 and regularly published online three times a year (February, July, October).
Articles 16 Documents
Search results for , issue "Vol 12, No 4 (2023): July 2023" : 16 Documents clear
A comprehensive review on the use of biodiesel for diesel engines Van Giao Nguyen; Minh Tuan Pham; Nguyen Viet Linh Le; Huu Cuong Le; Thanh Hai Truong; Dao Nam Cao
International Journal of Renewable Energy Development Vol 12, No 4 (2023): July 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.54612

Abstract

Fossil fuels are the main source of energy for transportation operations around the world. However, fossil fuels cause extremely negative impacts on the environment, as well as uneven distribution across countries, increasing energy insecurity. Biodiesel is one of the potential and feasible options in recent years to solve energy problems. Biodiesel is a renewable, low-carbon fuel source that is increasingly being used as a replacement for traditional fossil fuels, particularly in diesel engines. Biodiesel has several potential benefits such as reducing greenhouse gas emissions, improving air quality, and energy independence. However, there are also several challenges associated with the use of biodiesel including the compatibility of biodiesel with existing engine technologies and infrastructure as well as the cost of production, which can vary depending on factors such as location, climate, and competing uses for the feedstocks. Meanwhile, studies aimed at comprehensively assessing the impact of biodiesel on engine power, performance, and emissions are lacking. This becomes a major barrier to the dissemination of this potential energy source. Therefore, this study will provide a comprehensive view of the physicochemical properties of biodiesel that affect the performance and emission properties of the engine, as well as discuss the difficulties and opportunities of this potential fuel source.
Offering strategy of a price-maker virtual power plant in the day-ahead market Nhung Nguyen-Hong; Khai Bui Quang; Long Phan Vo Thanh; Duc Bui Huynh
International Journal of Renewable Energy Development Vol 12, No 4 (2023): July 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.53193

Abstract

With the rapid increase of renewable energy sources (RESs), the virtual power plant model (VPP) has been developed to integrate RESs, energy storage systems (ESSs), and local customers to overcome the RESs’ disadvantages. When the VPP’s capacity is large enough, it can participate in the electricity market as a price-maker instead of a price-taker to obtain a higher profit. This study proposes a bi-level optimization model to determine the optimal trading strategies of a price-maker VPP in the day-ahead (DA) market. The operation schedule of the components in the VPP is also optimized to achieve the highest profit for the VPP. In the bi-level optimization problem, the upper-level model is maximizing the VPP’s profit while the lower-level model is the DA market-clearing problem. The bi-level optimization problem is formulated as a Mathematical Problem with Equilibrium Constraints (MPEC), reformulated to a Mixed Integer Linear Problem (MILP), then solved by GAMS and CPLEX. This study applies the bi-level optimization model to a test VPP system, including wind plants (WP), solar plants (PV), biogas energy plants (BG), ESSs, and several customers. The maximum power outputs of WP and PV are 100MW and 90MW, respectively. The total installed capacity of BG is 70MW, while the ESS’ rated capacity is 100MWh. The local customers have the highest total consumption of 100MW. In addition to the VPP, four GENCOs and three retailers participate in the DA market. The results show that the market-clearing price varies depending on the participants’ production/consumption quantity and offering/bidding price. However, based on the optimization model, the VPP can take full advantage of WP and PV available power output, choose the right time to operate BG, then obtain the highest profit. The results also show that with the ESS’ rated capacity of 100MWh, the ESS’ rated discharging/charging power increased from 10MW to 50MW will increase VPP’s profit from 45987$ to 49464$. The obtained results show that the proposed model has practical significance
Optimization of biodiesel production from Nahar oil using Box-Behnken design, ANOVA and grey wolf optimizer Van Nhanh Nguyen; Prabhakar Sharma; Anurag Kumar; Minh Tuan Pham; Huu Cuong Le; Thanh Hai Truong; Dao Nam Cao
International Journal of Renewable Energy Development Vol 12, No 4 (2023): July 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.54941

Abstract

Biodiesel manufacturing from renewable feedstocks has received a lot of attention as a viable alternative to fossil fuels. The Box-Behnken design, analysis of variance (ANOVA), and the Grey Wolf Optimizer (GWO) algorithm were used in this work to optimise biodiesel production from Nahar oil. The goal was to determine the best operating parameters for maximising biodiesel yield. The Box-Behnken design is used, with four essential parameters taken into account: molar ratio, reaction duration and temperature, and catalyst weight percentage. The response surface is studied in this design, and the key factors influencing biodiesel yield are discovered. The gathered data is given to ANOVA analysis to determine the statistical significance. ANOVA analysis is performed on the acquired data to determine the statistical significance of the components and their interactions. The GWO algorithm is used to better optimise the biodiesel production process. Based on the data provided, the GWO algorithm obtains an optimised yield of 91.6484% by running the reaction for 200 minutes, using a molar ratio of 7, and a catalyst weight percentage of 1.2. As indicated by the lower boundaries, the reaction temperature ranges from 50 °C. The results show that the Box-Behnken design, ANOVA, and GWO algorithm were successfully integrated for optimising biodiesel production from Nahar oil. This method offers useful insights into process optimisation and indicates the possibilities for increasing the efficiency and sustainability of biodiesel production. Further study can broaden the use of these strategies to various biodiesel production processes and feedstocks, advancing sustainable energy technology.
Prospects of low carbon development for Pakistan’s energy and power sector in the post Covid scenario Ubaid ur Rehman Zia; Hina Aslam; Muhammad Zulfiqar; Sibghat Ullah
International Journal of Renewable Energy Development Vol 12, No 4 (2023): July 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.49927

Abstract

In the backdrop of COVID19 recovery, Pakistan is still struggling to cope with the economic challenges and disruptions caused in the energy supply chain. On one hand where COVID has brought serious socio-economic costs and prolonged delays, it has also provided opportunity for developing countries such as Pakistan to “build-forward-better” their economies in a more sustainable and climate friendly manner. This study particularly highlights the impact of COVID on energy supply and demand sectors of Pakistan, its near- and long-term impacts, and what policy interventions can be adopted to put Pakistan on-track to achieve its Nationally Determined Contributions (NDCs). The economic focus in on “Green Recovery” and what key interventions will foster a rapid transition towards decarbonization in Pakistan. Low Emission Analysis Platform (LEAP) model is used to provide energy sector outlook (2020-2040) of Pakistan under different scenario i.e., Pre COVID growth, Business-as-Usual, Slow Recovery, and Green Recovery from COVID. The results obtained from the model depicts that following a green recovery scenario, Pakistan can reduce around 10 Mtoe (9%) of its total energy use, 53 TWh of electricity, 19 Mt of emissions from demand sectors, and 11 Mt of emissions from the power sector by 2030. For total levelized cost of the power sector, the green recovery scenario represents a generation cost of $13 billion by 2030 which further highlights that energy efficiency could lead to cost savings of approximately $3 billion each year by 2030. Green recovery is however still a daunting task as it would require economic stimulus of $8 billion only to recover to its pre COVID scenario and total investments of $120 billion by 2030.
Comparative analysis of filterability behavior of B30 and B40 biodiesel blends on various porosity and dimension of fuel filter Yogi Pramudito; Nur Allif Fathurrahman; Ahmad Syihan Auzani; Cahyo Setyo Wibowo; Riesta Anggarani; Ariana Soemanto; Bambang Sugiarto
International Journal of Renewable Energy Development Vol 12, No 4 (2023): July 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.52801

Abstract

This report is focused on comparative analysis of the impact of using biodiesel blends containing more than 30% biodiesel in diesel engine filtration systems. The objective of this study is to support the sustainability of the mandatory biodiesel utilization program by more than 30%. To evaluate filterability behavior of high-percentage biodiesel blends, namely B30 and B40 (30 and 40%-vol biodiesel on diesel fuel), the study employed the ASTM D 2068 Filter Blocking Tendency (FBT). After filter rig test, fuel filter pressure was also evaluated using the JIS 1617 standard method. It is important to note that fuel filter plays an important role in removing contaminants from fuel, and, hence, the effect of the difference in filter porosity needs to be observed with pressure difference across fuel filter monitored at the flow rate (0.03 m3/h and fuel temperature (15 ⁰C and 25 ⁰C). Furthermore, the effect of changes in temperature and surface morphology on the characteristics of filter was observed in this study. Based on FBT analysis, a polynomial regression (R2 > 0.98) was used to describe the relationship between FBT value and the effect of biodiesel blends on filterability. It was concluded that the temperature, monoglyceride content, and FAME concentration in the diesel fuel influenced their FBT. However, the rise in waxy particles at 15oC (near Cloud Point) could result in a more significant average pressure drop than at 25⁰C (ambient temperature). It was also found that a higher biodiesel mixture potentially results in a higher-pressure difference due to the lower fuel temperature and the formation of waxy contaminants that can clog filter.
Energy demand modeling for low carbon cities in Thailand: A case study of Nakhon Ratchasima province Atit Tippichai; Kattreeya Teungchai; Atsushi Fukuda
International Journal of Renewable Energy Development Vol 12, No 4 (2023): July 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.53211

Abstract

Nakhon Ratchasima is one of the northeastern cities which has been promoted as one of the low-carbon cities in Thailand. The study aims to evaluate policies and measures on greenhouse gas (GHG) emissions mitigation to meet the target at the provincial level. The Low Emissions Analysis Platform (LEAP) is used as a modeling tool to simulate energy demand for each economic sector. The 2019 data is set as a base year, using top-down and bottom-up approaches depending on the availability of data for the analysis. The model consists of two scenarios: (1) Business-as-usual (BAU) scenario and Low carbon scenario (LCS). Transport and industry sectors are the most energy-consuming and CO2-emitting sectors in Nakhon Ratchasima Province. In the LCS case, the final energy demand and CO2 emissions in 2050 will be reduced by about 40% compared to the BAU case. In addition, CO2 emissions in Nakhon Ratchasima Province will peak around 2038, this is not the case with BAU. The study could predict future energy demand and propose a way forward to reducing GHG emissions at the provincial level.
Unveiling frequency-dependent dielectric behavior of cellulose-based polymer electrolyte at various temperature and salt concentration Christin Rina Ratri; Qolby Sabrina; Titik Lestariningsih; Adam Febriyanto Nugraha; Sotya Astutiningsih; Mochamad Chalid
International Journal of Renewable Energy Development Vol 12, No 4 (2023): July 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.53103

Abstract

Dielectric behavior of cellulose-based polymer electrolyte was studied at various temperature and salt concentration. A polymer electrolyte membrane based on cellulose acetate (CA) as the polymer host and LiClO4 as the dopant salt was fabricated using the solution casting technique. The dopant salt concentration was varied as 0.3, 0.5, 0.67, and 1M. Dielectric relaxation spectroscopy characterization were performed using potentiostat at frequency ranging from 0.1 Hz to 1 MHz. Measurements were performed by sandwiching the membrane between stainless steel plates. The ionic conductivity was then calculated based on the Cole–Cole plot obtained from the impedance measurement. It was found that sample 1 M had the highest ionic conductivity at high frequencies. However, the frequency-dependent conductance plot showed that the ionic conductivity of the 1 M sample significantly decreased at low frequencies, i.e. from 3.41×10-5 S/cm at 1 MHz to 1.9×10-8 S/cm at 0.1 Hz. Other samples did not experience this phenomenon, including those with a Celgard© commercial membrane to represent commercial Li-ion batteries. This is caused by excess charge accumulation, leading to a high concentration of immobile charge carriers, which reduces the available free volume surrounding the polymer chain. This resulted in a significant decrease in ionic conductivity at low frequencies. Temperature variation was also performed on the conductivity measurement at 30-70 °C. Temperature variation showed more predictable behavior, where increasing the temperature activated charge carriers and enhanced ionic conductivity, from 1.81×10-5 S/cm at room temperature to 9.04×10-5 at 70°C. Sweeping across the frequency range results in a consistent sequence of ionic conductivities among the samples at various temperatures. This work is beneficial for evaluating a biomass-based polymer electrolyte complex in a Li-ion battery environment. Feasibility studies can be performed at various concentrations and temperatures to determine the optimal level of dopant salt input across a broad frequency range.
Experimentation on enhancement of solar still performance Sonia Z. Issaq; Shamil K. Talal; Aasim A. Azooz
International Journal of Renewable Energy Development Vol 12, No 4 (2023): July 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.53239

Abstract

This work presents new results from controlled experiments using well-designed and constructed single-inclination solar stills. The aim of these experiments is to explore methods for enhancing still performance by studying the individual effects of three types of methods. Specifically, the experiments investigate the actual effects of still basin water depth, the use of a sensible heat storage medium, and the treatment of the inner glass surface with waxy substances. The main distinction in this work is the use of solar stills that can achieve thermal efficiencies in excess of 40% under favourable weather conditions without any modification. This high efficiency level allows for meaningful analysis of the impact of modifications on still performance. The results indicate that still yield, productivity, and thermal efficiency decrease significantly when the water depth in the basin exceeds 6 cm. additionally, introducing black gravel in excess of a 2% gravel to water mass ratio in the still basin does not produce a significant change in still thermal efficiency. Treatment of the still inner glass surface with two types of waxy materials resulted in large drop in still performance.
Adsorption method using zeolite to produce fuel grade bioethanol Hargono Hargono; Noer Abyor Handayani; Sheila Dwifa Andani; Ersa Wardani; Ulma Aqari Fisama; Kevin Setiadi Seng
International Journal of Renewable Energy Development Vol 12, No 4 (2023): July 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.50936

Abstract

Bitter cassava (Manihot glaziovii) has the potential to be converted into bioethanol. However, the distillation process can only purify it to 95% bioethanol. Therefore, it is necessary to carry out an adsorption process to obtain 99.8% bioethanol. This study aimed to investigate the effect of bitter cassava starch hydrolysis time and coral rock in the distillation column on glucose and bioethanol concentrations, respectively. Additionally, the study discussed the effect of adsorbent height (60, 80, 100, or 120 cm) in the adsorption column on bioethanol concentration. There are three main stages for obtaining fuel-grade bioethanol: (i) bitter cassava hydrolysis, (ii) bioethanol production, and (iii) bioethanol purification (distillation and adsorption). Zeolite 4A and natural zeolite were used as adsorbents in this study. The results showed that the best fermentation was obtained at 90 hours, resulting in an ethanol concentration of 13.82% (v/v), which could be purified up to 95.64% through distillation. Furthermore, further purification (adsorption) could extend fuel-grade bioethanol (99.62% and 98.42%). Another analysis also indicated that zeolite 4A was more feasible than natural zeolite for producing fuel-grade bioethanol.
Demand response based microgrid's economic dispatch Muhammad Hammad Saeed; MD Sohel Rana; MD Kausaraahmed; Claude Ziad El-Bayeh; Fangzong Wang
International Journal of Renewable Energy Development Vol 12, No 4 (2023): July 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.49165

Abstract

The development of energy management tools for next-generation Distributed Energy Resources (DER) based power plants, such as photovoltaic, energy storage units, and wind, helps power systems be more flexible. Microgrids are entities that coordinate DERs in a persistently more decentralized fashion, hence decreasing the operational burden on the main grid and permitting them to give their full benefits. A new power framework has emerged due to the integration of DERs-based microgrids into the conventional power system. With the rapid advancement of microgrid technology, more emphasis has been placed on maintaining the microgrids' long-term economic feasibility while ensuring security and stability. The objective of this research is to provide a multi-objective economic operation technique for microgrids containing air-conditioning clusters (ACC) taking demand response into account. A dynamic price mechanism is proposed, accurately reflecting the system's actual operational status. For economic dispatch, flexible loads and air conditioners are considered demand response resources. Then, a consumer-profit model and an AC operating cost model are developed, with a set of pragmatic constraints of consumer comfort. The generation model is then designed to reduce the generation cost. Finally, a microgrid simulation platform is developed in MATLAB/Simulink, and a case is designed to evaluate the proposed method's performance. The findings show that consumer profit increases by 69.2% while ACC operational costs decrease by 18.2%. Moreover, generation costs are reduced without sacrificing customer satisfaction.

Page 1 of 2 | Total Record : 16