cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
Jl. Imam Bardjo, No 4 Semarang 50241 INDONESIA
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
Published by Universitas Diponegoro
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.14710/ijred
Core Subject : Science,
The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass, Wind energy technology, Material science and technology, Low energy Architecture, Geothermal energy, Wave and Tidal energy, Hydro power, Hydrogen Production Technology, Energy Policy, Socio-economic on energy, Energy efficiency and management The journal was first introduced in February 2012 and regularly published online three times a year (February, July, October).
Articles 9 Documents
Search results for , issue "Vol 5, No 3 (2016): October 2016" : 9 Documents clear
Optimal Operation of Micro-grids Considering the Uncertainties of Demand and Renewable Energy Resources Generation Jasemi, Malek; Adabi, Farid; Mozafari, Babak; Salahi, Samira
International Journal of Renewable Energy Development Vol 5, No 3 (2016): October 2016
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.5.3.233-248

Abstract

Nowadays, due to technical and economic reasons, the distributed generation (DG) units are widely connected to the low and medium voltage network and created a new structure called micro-grid. Renewable energies (especially wind and solar) based DGs are one of the most important generations units among DG units. Because of stochastic behavior of these resources, the optimum and safe management and operation of micro-grids has become one of the research priorities for researchers. So, in this study, the optimal operation of a typical micro-grid is investigated in order to maximize the penetration of renewable energy sources with the lowest operation cost with respect to the limitations for the load supply and the distributed generation resources. The understudy micro-grid consists of diesel generator, battery, wind turbines and photovoltaic panels. The objective function comprises of fuel cost, start-up cost, spinning reserve cost, power purchasing cost from the upstream grid and the sales revenue of the power to the upstream grid. In this paper, the uncertainties of demand, wind speed and solar radiation are considered and the optimization will be made by using the GAMS software and mixed integer planning method (MIP).Article History: Received May 21, 2016; Received in revised form July 11, 2016; Accepted October 15, 2016; Available onlineHow to Cite This Article: Jasemi, M.,  Adabi, F., Mozafari, B., and Salahi, S. (2016) Optimal Operation of Micro-grids Considering the Uncertainties of Demand and Renewable Energy Resources Generation, Int. Journal of Renewable Energy Development, 5(3),233-248.http://dx.doi.org/10.14710/ijred.5.3.233-248
Production of Solid Fuel by Torrefaction Using Coconut Leaves As Renewable Biomass Pestaño, Lola Domnina Bote; Jose, Wilfredo I.
International Journal of Renewable Energy Development Vol 5, No 3 (2016): October 2016
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.5.3.187-197

Abstract

The reserves of non-renewable energy sources such as coal, crude oil and natural gas are not limitless, they gradually get exhausted and their price continually increases. In the last four decades, researchers have been focusing on alternate fuel resources to meet the ever increasing energy demand and to avoid dependence on crude oil. Amongst different sources of renewable energy, biomass residues hold special promise due to their inherent capability to store solar energy and amenability to subsequent conversion to convenient solid, liquid and gaseous fuels. At present, among the coconut farm wastes such as husks, shell, coir dust and coconut leaves, the latter is considered the most grossly under-utilized by in situ burning in the coconut farm as means of disposal. In order to utilize dried coconut leaves and to improve its biomass properties, this research attempts to produce solid fuel by torrefaction using dried coconut leaves for use as alternative source of energy. Torrefaction is a thermal method for the conversion of biomass operating in the low temperature range of 200oC-300oC under atmospheric conditions in absence of oxygen. Dried coconut leaves were torrefied at different feedstock conditions. The key torrefaction products were collected and analyzed. Physical and combustion characteristics of both torrefied and untorrefied biomass were investigated. Torrefaction of dried coconut leaves significantly improved the heating value compared to that of the untreated biomass.  Proximate compositions of the torrefied biomass also improved and were comparable to coal. The distribution of the products of torrefaction depends highly on the process conditions such as torrefaction temperature and residence time. Physical and combustion characteristics of torrefied biomass were superior making it more suitable for fuel applications.Article History: Received June 24th 2016; Received in revised form August 16th 2016; Accepted 27th 2016; Available onlineHow to Cite This Article: Pestaño, L.D.B. and Jose, W.I. (2016) Production of Solid Fuel by Torrefaction Using Coconut Leaves As Renewable Biomass. Int. Journal of Renewable Energy Development, 5(3), 187-197.http://dx.doi.org/10.14710/ijred.5.3.187-197
A Novel Global MPP Tracking of Photovoltaic System based on Whale Optimization Algorithm Kumar, Cherukuri Santhan; Rao, Rayapudi Srinivasa
International Journal of Renewable Energy Development Vol 5, No 3 (2016): October 2016
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.5.3.225-232

Abstract

To harvest maximum amount of solar energy and to attain higher efficiency, photovoltaic generation (PVG) systems are to be operated at their maximum power  point (MPP) under both variable climatic and partial shaded condition (PSC). From literature most of conventional MPP tracking (MPPT) methods are able to guarantee MPP successfully under uniform shading condition but fails to get global MPP as they may trap at local MPP under PSC, which adversely deteriorates the efficiency of Photovoltaic Generation (PVG) system. In this paper a novel MPPT based on Whale Optimization Algorithm (WOA) is proposed to analyze analytic modeling of PV system considering both series and shunt resistances for MPP tracking under PSC. The proposed algorithm is tested on 6S, 3S2P and 2S3P Photovoltaic array configurations for different shading patterns and results are presented. To compare the performance, GWO and PSO MPPT algorithms are also simulated and results are also presented.  From the results it is noticed that proposed MPPT method is superior to other MPPT methods with reference to accuracy and tracking speed.Article History: Received July 23rd 2016; Received in revised form September 15th 2016; Accepted October 1st 2016; Available onlineHow to Cite This Article: Kumar, C.H.S and Rao, R.S. (2016) A Novel Global MPP Tracking of Photovoltaic System based on Whale Optimization Algorithm. Int. Journal of Renewable Energy Development, 5(3), 225-232.http://dx.doi.org/10.14710/ijred.5.3.225-232
Potential Effect and Analysis of High Residential Solar Photovoltaic (PV) Systems Penetration to an Electric Distribution Utility (DU) Dellosa, Jeffrey Tamba
International Journal of Renewable Energy Development Vol 5, No 3 (2016): October 2016
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.5.3.179-185

Abstract

The Renewable Energy Act of 2008 in the Philippines provided an impetus for residential owners to explore solar PV installations at their own rooftops through the Net-Metering policy. The Net-Metering implementation through the law however presented some concerns with inexperienced electric DU on the potential effect of high residential solar PV system installations. It was not known how a high degree of solar integration to the grid can possibly affect the operations of the electric DU in terms of energy load management. The primary objective of this study was to help the local electric DU in the analysis of the potential effect of high residential solar PV system penetration to the supply and demand load profile in an electric distribution utility (DU) grid in the province of Agusan del Norte, Philippines. The energy consumption profiles in the year 2015 were obtained from the electric DU operating in the area. An average daily energy demand load profile was obtained from 0-hr to the 24th hour of the day based from the figures provided by the electric DU. The assessment part of the potential effect of high solar PV system integration assumed four potential total capacities from 10 Mega Watts (MW) to 40 MW generated by all subscribers in the area under study at a 10 MW interval. The effect of these capacities were measured and analyzed with respect to the average daily load profile of the DU. Results of this study showed that a combined installations beyond 20 MWp coming from all subscribers is not viable for the local electric DU based on their current energy demand or load profile. Based from the results obtained, the electric DU can make better decisions in the management of high capacity penetration of solar PV systems in the future, including investment in storage systems when extra capacities are generated.Article History: Received July 15th 2016; Received in revised form Sept 23rd 2016; Accepted Oct 1st 2016; Available onlineHow to Cite This Article: Dellosa, J. (2016) Potential Effect and Analysis of High Residential Solar Photovoltaic (PV) Systems Penetration to an Electric Distribution Utility (DU). Int. Journal of Renewable Energy Development, 5(3), 179-185.http://dx.doi.org/10.14710/ijred.5.3.179-185
The Temperature Profile for The Innovative Design of the Perforated Fin Al-Saddy, Hisham; Soylemez, Mehmet
International Journal of Renewable Energy Development Vol 5, No 3 (2016): October 2016
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.5.3.259-266

Abstract

The development of the perforated fin had proposed in many studies to enhance the heat transfer from electronic pieces. This paper presents a novel derivative method to find the temperature distribution of the new design (inclined perforated) of the pin fin. Perforated with rectangular section and different angles of inclination was considered. Signum Function is used for modeling the variable heat transfer area. Set of parameters to handle the conduction and convection area were calculated. Degenerate Hypergeometric Equation (DHE) was used for modeling the Complex energy differential equation and then solved by Kummer’s series. In the validation process, Ansys 16.0-Steady State Thermal was used. Two geometric models were considered. The big reliability of the presented model comes from the high agreement of the validation results about (0.25%). The results show the increase of the inclination leads to the enhancement of the temperature difference and heat transfer ratio. Improved of Heat transfer ratio is ranging from 13% to 50%.Article History: Received June 12th 2016; Received in revised form August 6th 2016; Accepted August 24th 2016; Available onlineHow to Cite This Article: Jasim, H.H and Soylemez, M.S. (2016). The temperature profile for the innovative design of the perforated fin. Int. Journal of Renewable Energy Development, 5(3), 259-266http://dx.doi.org/10.14710/ijred.5.3.259-266
Subsurface Structure and Fluid Flow Analysis Using Geophysical Methods in the Geothermal Manifestation Area of Paguyangan, Brebes, Central Java Setyawan, Agus; Triahadini, Agnis; Yuliananto, Yayan; Aribowo, Yoga; Widiarso, Dian Agus
International Journal of Renewable Energy Development Vol 5, No 3 (2016): October 2016
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.5.3.171-177

Abstract

The indication of an active geothermal system is shown by the presence of surface manifestations such as the hot spring in Kedungoleng, Paguyangan, Brebes, Central Java. The temperature of the largest hot spring reaches 74o C and there is an assumption that this is an outflow of Mount Slamet geothermal system. DC-resistivity, Spontaneous Potential (SP) and Shallow Surface Temperature surveys were conducted to determine the subsurface structure as well as its correlation with the distribution of thermal fluid flow and shallow surface temperature. The subsurface resistivity has been investigated using 5 points of the Schlumberger configuration with 400 m separation for each point. For the fluid and temperature pattern, a measurement using 15 m interval in 3 lines of conducting fixed electrode configuration has been carried out, along with a 75 cm of depth of temperature measurement around the manifestation area. The thermal fluid is assumed by the low resistivity of 0.756 to 6.91Ωm and this indicates sandstone that has permeable characteristic. The fluid flows in two layers of Sandstone at more than 10 meter from surface of the first layer. Accordingly, the SP values have a range between -11- 11 mV and a depth interval of 13.42- 28.75 m and the distribution of temperature is between 24o-70oC at a tilting range of 46.06o-12.60o. Hence it can be inferred that the thermal fluid moves in the Northwest direction and is controlled by a fault structure stretching from Northwest to Southeast.Article History: Received Feb 3, 2016; Received in revised form July 11, 2016; Accepted August 13, 2016; Available onlineHow to Cite This Article: Setyawan, A., Triahadini, A., Yuliananto, Y., Aribowo, Y., and Widiarso, D.A. (2016) Subsurface Structure and Fluid Flow Analyses Using Geophysical Methods in Geothermal Manifestation Area of Paguyangan, Brebes, Central Java. Int. Journal of Renewable Energy Development, 5(3), 171-177.http://dx.doi.org/10.14710/ijred.5.3.171-177
Performance Evaluation of Various Phase Change Materials for Thermal Energy Storage of A Solar Cooker via Numerical Simulation Tarwidi, Dede; Murdiansyah, Danang Triantoro; Ginanjar, Narwan
International Journal of Renewable Energy Development Vol 5, No 3 (2016): October 2016
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.5.3.199-210

Abstract

In this paper, thermal performance of various phase change materials (PCMs) used as thermal energy storage in a solar cooker has been investigated numerically. Heat conduction equations in cylindrical domain are used to model heat transfer of the PCMs. Mathematical model of phase change problem in the PCM storage encompasses heat conduction equations in solid and liquid region separated by moving solid-liquid interface. The phase change problem is solved by reformulating heat conduction equations with emergence of moving boundary into an enthalpy equation. Numerical solution of the enthalpy equation is obtained by implementing Godunov method and verified by analytical solution of one-dimensional case. Stability condition of the numerical scheme is also discussed. Thermal performance of various PCMs is evaluated via the stored energy and temperature history. The simulation results show that phase change material with the best thermal performance during the first 2.5 hours of energy extraction is shown by erythritol. Moreover, magnesium chloride hexahydrate can maintain temperature of the PCM storage in the range of 110-116.7°C for more than 4 hours while magnesium nitrate hexahydrate is effective only for one hour with the PCM storage temperature around 121-128°C. Among the PCMs that have been tested, it is only erythritol that can cook 10 kg of the loaded water until it reaches 100°C for about 3.5 hours.Article History: Received June 22nd 2016; Received in revised form August 26th 2016; Accepted Sept 1st 2016; Available onlineHow to Cite This Article: Tarwidi, D., Murdiansyah, D.T, Ginanja, N. (2016) Performance Evaluation of Various Phase Change Materials for Thermal Energy Storage of A Solar Cooker via Numerical Simulation. Int. Journal of Renewable Energy Development, 5(3), 199-210.http://dx.doi.org/10.14710/ijred.5.3.199-210
Evaluation of wind potential for an optimum choice of wind turbine generator on the sites of Lomé, Accra, and Cotonou located in the gulf of Guinea Salami, Akim Adekunlé; Ajavon, Ayité Sénah Akoda; Kodjo, Mawugno Koffi; Bedja, Koffi-Sa
International Journal of Renewable Energy Development Vol 5, No 3 (2016): October 2016
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.5.3.211-223

Abstract

This work presents the characterization and assessment of wind energy potential in annual and monthly levels of the sites of Lomé, Accra and Cotonou located in the Gulf of Guinea, and the optimal characteristics of wind turbines to be installed on these sites. Studies of characterization and the wind potential of these sites from the wind speed data collected over a period of thirteen years at a height of 10 meters above the ground, show an annual average speed of 3.52 m/s for Lomé, 3.99 m/s for Cotonou and 4.16 m/s for Accra. These studies also showed that a monthly average speed exceeding 4 m/s was observed on the sites of Cotonou and Accra during the months of February, March, April, July, August and September and during the months of July, August and September on the site of Lomé. After a series of simulation conducted using the software named PotEol that we have developed in Scilab, we have retained that the wind turbines rated speeds of ~8 to 9 m/s at the sites of Lomé and Cotonou and ~ 9 to 10 m/s on the site of Accra would be the most appropriate speeds for optimal exploitation of electric energy from wind farms at a height of 50 m above the ground.Article History: Received May 26th 2016; Received in revised form August 24th 2016; Accepted August 30th 2016; Available onlineHow to Cite This Article: Salami, A.A., Ajavon, A.S.A , Kodjo, M.K. and Bédja, K. (2016) Evaluation of Wind Potential for an Optimum Choice of Wind Turbine Generator on the Sites of Lomé, Accra, and Cotonou Located in the Gulf of Guinea. Int. Journal of Renewable Energy Development, 5(3), 211-223.http://dx.doi.org/10.14710/ijred.5.3.211-223
The Effectiveness of New Solar Photovoltaic System with Supercapacitor for Rural Areas Romli, Muhammad Izuan Fahmi; Kumar Rajkumar, Rajprasad; Wan, Wong Yee; Lee Wai, Chong; Arelhi, Roselina; Isa, Dino
International Journal of Renewable Energy Development Vol 5, No 3 (2016): October 2016
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.5.3.249-257

Abstract

Countries like Malaysia have more that 70% of its population living in rural areas. Majority of these rural areas lie in regions where most villages do not have grid connected electricity. Renewable energy using photovoltaic (PV) panels offers an alternative and cost efficient solution that exploits the yearlong abundance of sunlight available in countries like Malaysia. The main problem with PV systems is the high maintenance costs in replacing batteries every few years which makes PV systems unattractive for rural areas. A full scale PV system, developed in Semenyih Malaysia, aims to increase battery lifetime and reduce maintenance costs by incorporating supercapacitors. The system was developed in a life-sized cabin to mimic a rural home. A programmable load is used to test the system with the load profile of a typical rural household usage. Experimental and simulation results show that the supercapacitor bank is able to reduce the stress on the battery by absorbing peak current surges. Results also show that the system is able to maintain a high battery state of charge during the entire day.Article History: Received June 17th 2016; Received in revised form August 16th 2016; Accepted Sept 10th 2016; Available onlineHow to Cite This Article: Fahmi, M.I., Rajkumar, R.,  Wong, Y.W., Chong, L.W., Arelhi, R., and Isa, D. (2016) The Effectiveness of New Solar Photovoltaic System with Supercapacitor for Rural Areas. Int. Journal of Renewable Energy Development, 5(3), 249-257.http://dx.doi.org/10.14710/ijred.5.3.249-257

Page 1 of 1 | Total Record : 9