cover
Contact Name
Andy Sapta
Contact Email
sapta@royal.ac.id
Phone
-
Journal Mail Official
lppm_stmik@royal.ac.id
Editorial Address
-
Location
Kab. asahan,
Sumatera utara
INDONESIA
JURTEKSI
Published by STMIK Royal Kisaran
ISSN : 24071811     EISSN : 25500201     DOI : -
Core Subject : Science,
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) is a scientific journal which is published by STMIK Royal Kisaran. This journal published twice a year on December and June. This journal contains a collection of research in information technology and computer system.
Arjuna Subject : -
Articles 702 Documents
ANALYTIC NETWORK PROCESS IN DETERMINING RECIPIENTS OF EDUCATION GRANTS NORTH SUMATRA PROVINCE Putri, Adelia Fariza; Fakhriza, M
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 12 No. 1 (2025): Desember 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v12i1.4365

Abstract

This study aims to apply the Analytic Network Process (ANP) method as a decision support tool in determining the eligibility of education grant recipients in North Sumatra Province. The background of this research arises from the large number of grant applicants compared to the available budget, as well as the absence of clear and objective evaluation standards. The ANP method was chosen because it allows the interdependence between assessment criteria such as institutional feasibility, performance and achievement, social and educational impact, and accountability and transparency to be analyzed comprehensively. Data were obtained through interviews, documentation, and observation at the North Sumatra Provincial Education Office. The results of the ANP model show that the criterion with the highest weight is accountability and transparency (0.44), followed by social and educational impact (0.31). Among the three alternatives, community-based education foundations (A2) obtained the highest total weight (0.30), indicating that they are the most eligible recipients of education grants. The implementation of the ANP-based decision support system produces valid and consistent ranking results (CR < 0.1), enabling faster, fairer, and more transparent decision-making. Therefore, the ANP method contributes significantly to improving governance, objectivity, and accountability in the distribution of education grants in North Sumatra Province.
STOCK PRICE PREDICTION FOR MATERIALS SECTOR USING CNN AND BI-LSTM ALGORITHM Annisa Desianty; Widang Muttaqin
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 12 No. 1 (2025): Desember 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v12i1.4372

Abstract

Abstract: The materials sector is one of the stock markets sectors that attracts investors due to the high level of construction activity in Indonesia, which supports long-term growth. Stock price movements are influenced by various factors, requiring investors to determine the appropriate timing for buying, selling, or holding stocks. Therefore, this study aims to predict stock prices in the materials sector using a combination of CNN–BiLSTM algorithms. The research data were obtained from Yahoo Finance and processed through min–max normalization, data splitting, sliding window, model implementation, and evaluation stages. Testing was conducted on INTP and SMGR stocks with data split scenarios ranging from 60:40 to 90:10. The results show that CNN–BiLSTM performs best with a 90:10 data split, with minimum MSE and MAPE values of 0.000153 and 2.471% for INTP, and 0.000199 and 2.208% for SMGR, respectively. These findings indicate that increasing the proportion of training data improves the model's ability to learn historical patterns and produce more stable predictions. Keywords: CNN-BILSTM; materials sector; stock Abstrak: Sektor materials merupakan salah satu sektor saham yang diminati investor karena tingginya aktivitas pembangunan di Indonesia yang mendorong pertumbuhan jangka panjang. Pergerakan harga saham dipengaruhi oleh berbagai faktor sehingga investor perlu menentukan waktu transaksi yang tepat. Oleh karena itu, penelitian ini bertujuan memprediksi harga saham sektor materials menggunakan kombinasi algoritma CNN–BiLSTM. Data penelitian diperoleh dari Yahoo Finance dan diproses melalui tahapan normalisasi min–max, pembagian data, sliding window, implementasi model, serta evaluasi. Pengujian dilakukan pada saham INTP dan SMGR dengan skenario pembagian data 60:40 hingga 90:10. Hasil menunjukkan bahwa CNN–BiLSTM menghasilkan performa terbaik pada pembagian data 90:10, dengan nilai MSE dan MAPE minimum masing-masing sebesar 0.000153 dan 2.471% untuk INTP, serta 0.000199 dan 2.208% untuk SMGR. Temuan ini mengindikasikan bahwa peningkatan porsi data latih meningkatkan kemampuan model dalam mempelajari pola historis dan menghasilkan prediksi yang lebih stabil. Kata kunci: CNN-BILSTM; saham; sektor materials