cover
Contact Name
Andy Sapta
Contact Email
sapta@royal.ac.id
Phone
-
Journal Mail Official
lppm_stmik@royal.ac.id
Editorial Address
-
Location
Kab. asahan,
Sumatera utara
INDONESIA
JURTEKSI
Published by STMIK Royal Kisaran
ISSN : 24071811     EISSN : 25500201     DOI : -
Core Subject : Science,
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) is a scientific journal which is published by STMIK Royal Kisaran. This journal published twice a year on December and June. This journal contains a collection of research in information technology and computer system.
Arjuna Subject : -
Articles 685 Documents
PREDICTING FUTURE ENROLLMENT TRENDS AT UNIVERSITAS LANCANG KUNING USING ARIMA AND LSTM MODELS Sutejo, Sutejo; Fadrial, Yogi Ersan; Sadar, M.; Hasan, Mhd Arief
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 3 (2025): Juni 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i3.3865

Abstract

Abstract: This research is driven by the challenges faced by Universitas Lancang Kuning (UNILAK) in attracting applicants amidst intense competition, especially after the government's policy opened independent pathways to State Universities (PTN) from 2022-2023, which impacted private university applicant numbers. To address this and support strategic planning, this study aims to predict the trend of prospective students applying to all study programs at UNILAK for the period 2025-2027. Two time series models were employed: ARIMA (AutoRegressive Integrated Moving Average) and LSTM (Long Short-Term Memory). Applicant data from 2019 to 2024 was used to build the model. The Augmented Dickey-Fuller (ADF) test confirmed the data's stationarity with a p-value of 0.0. ACF and PACF analyses determined the ARIMA parameters as p=1, d=1, q=1. The LSTM model was trained to capture more complex data patterns. ARIMA predictions for 2025, 2026, and 2027 are 3298.66, 3362.33, and 3371.30, respectively. LSTM predictions for the same years are 3335.64, 3476.52, and 3518.42. Evaluation using Root Mean Squared Error (RMSE) showed ARIMA (RMSE=588.72) to be more accurate than LSTM (RMSE=653.96). Nevertheless, LSTM provided a more optimistic prediction. This study concludes that ARIMA is better suited for short-term planning, while LSTM can be used for more ambitious long-term strategies. Keywords: arima; LSTM; applicants; prediction; university Abstrak: Penelitian ini didorong oleh tantangan Universitas Lancang Kuning (UNILAK) dalam menarik pendaftar di tengah persaingan ketat, khususnya setelah kebijakan pemerintah membuka jalur mandiri ke Perguruan Tinggi Negeri (PTN) sejak 2022-2023, yang menyebabkan penurunan jumlah pendaftar di universitas swasta. Untuk mendukung perencanaan strategis, studi ini bertujuan memprediksi tren jumlah calon mahasiswa yang mendaftar ke seluruh program studi di UNILAK untuk periode 2025-2027.Dua model deret waktu digunakan: ARIMA (AutoRegressive Integrated Moving Average) dan LSTM (Long Short-Term Memory). Data jumlah pendaftar dari 2019 hingga 2024 digunakan untuk membangun model. Uji Augmented Dickey-Fuller (ADF) menunjukkan data stasioner dengan p-value 0,0. Analisis ACF dan PACF menentukan parameter ARIMA sebagai p=1, d=1, q=1. Model LSTM dilatih untuk menangkap pola data yang lebih kompleks.Prediksi ARIMA untuk 2025, 2026, dan 2027 adalah 3298.66, 3362.33, dan 3371.30. Prediksi LSTM untuk tahun yang sama adalah 3335.64, 3476.52, dan 3518.42. Evaluasi menggunakan Root Mean Squared Error (RMSE) menunjukkan ARIMA (RMSE=588.72) lebih akurat daripada LSTM (RMSE=653.96). Meskipun demikian, LSTM memberikan prediksi yang lebih optimis. Studi ini menyimpulkan ARIMA lebih cocok untuk perencanaan jangka pendek, sementara LSTM dapat digunakan untuk strategi jangka panjang yang ambisius. Kata kunci: arima; LSTM; pendaftar; prediksi; universitas 
TRAFFIC FLOW DETECTION USING YOLOV4 AND DEEPSORT ON NVIDIA JETSON NANO Taufiq, Reny Medikawati; Syahril, Syahril; Rafdi, Faris Abi; Firdaus, Rahmad; Sunanto, Sunanto; Muarif, Putri Fadhilla
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 3 (2025): Juni 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i3.3871

Abstract

Abstract: This study aims to develop a Deep Learning-based Traffic Flow Detector to automatically and accurately observe traffic flow. Conventional traffic observation is often conducted manually or via CCTV, but it is prone to human error and difficult to use for real-time trend analysis. In this study, the YOLOv4 method is used to detect four types of vehicles (cars, motorcycles, buses, trucks). To continuously track vehicle movement and address occlusion issues, the Deep SORT algorithm is implemented. The YOLOv4 model used is a pre-trained model and was tested on seven CCTV video recordings obtained from the official website of the Pekanbaru City Transportation Department. The system was implemented on a limited device, the Nvidia Jetson Nano, as a simulation of direct CCTV integration. Test results showed a highest precision of 98%, but the maximum accuracy achieved was only 26%. This low accuracy is influenced by several factors, including video resolution, detection model quality, and lighting conditions. Nevertheless, the system demonstrates potential to support future traffic management and engineering decisions but still requires further optimization, including improving video resolution and quality, retraining the model with a more representative local dataset, using lighter and more accurate detection models, and optimizing the tracking algorithm. Keywords: deep learning; deepsort; NVIDIA Jetson NANO; traffic flow; YOLOv4  Abstrak: Penelitian ini bertujuan mengembangkan Traffic Flow Detector berbasis Deep Learning untuk mengobservasi arus lalu lintas secara otomatis dan akurat. Observasi lalu lintas konvensional sering dilakukan secara manual atau melalui CCTV, namun rentan terhadap human error dan sulit digunakan untuk menganalisis tren secara real-time. Pada penelitian ini digunakan metode YOLOv4 untuk mendeteksi empat jenis kendaraan (mobil, motor, bus, truk). Untuk melacak pergerakan kendaraan secara berkelanjutan dan mengatasi masalah occlusion, digunakan algoritma Deep SORT. Model YOLOv4 yang digunakan merupakan pre-trained model dan diujikan pada tujuh rekaman video CCTV yang diambil dari situs resmi Dinas Perhubungan Kota Pekanbaru. Sistem ini diimplementasikan pada perangkat terbatas Nvidia Jetson Nano sebagai simulasi penerapan langsung pada CCTV. Hasil pengujian menunjukkan presisi tertinggi mencapai 98%, namun akurasi tertingginya hanya sebesar 26%. Rendahnya akurasi dipengaruhi oleh beberapa faktor seperti resolusi video, kualitas model deteksi, serta kondisi pencahayaan. Meski demikian, sistem ini menunjukkan potensi untuk membantu pengambilan keputusan dalam manajemen dan rekayasa lalu lintas di masa depan, namun masih membutuhkan optimasi lebih lanjut, seperti  peningkatan kualitas video input, pelatihan ulang model dengan dataset lokal, penggunaan model deteksi yang lebih ringan dan akurat serta pengoptimalan algoritma pelacakan. Kata kunci: deep learning deepsort; Nvidia Jetson Nano; traffic flow; YOLOv4
PREDICTING LOAN ELIGIBILITY WITH SUPPORT VECTOR MACHINE: A MACHINE LEARNING APPROACH Rajunaidi, Rajunaidi; Yuliansyah, Herman; Sunardi, Sunardi; Murinto, Murinto
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 3 (2025): Juni 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i3.3876

Abstract

Abstract: Non-performing loans remain one of the main challenges faced by cooperatives, particularly when the loan eligibility assessment process is still conducted manually. This traditional approach tends to be time consuming, subjective, and prone to inaccurate decisions. This study aims to develop a predictive model for borrower eligibility using the Support Vector Machine (SVM) algorithm as a more efficient and objective machine learning-based solution. A total of 1,000 loan history records were processed using RapidMiner software, taking into account variables such as salary, years of employment, loan amount, monthly installment, employment status, monthly expenses, number of dependents, housing status, age, and collateral value. The model’s performance was evaluated using a confusion matrix and classification metrics including accuracy, precision, recall, and kappa. The results indicate that the SVM model achieved an accuracy of 90.05%, precision of 90.13%, recall of 90.05%, and f1 score of 90,08%, reflecting a strong performance in classifying borrower eligibility. The application of this method makes a significant contribution to the development of data driven decision support systems within cooperative environments. This finding expands the scientific understanding in the field of microfinance and supports the implementation of artificial intelligence technologies in making decisions that are more precise, rapid, and accurate.Keywords: cooperative; eligibility prediction; machine learning; non-performing loan; SVMAbstrak: Kredit macet merupakan salah satu permasalahan utama yang dihadapi koperasi, terutama ketika proses penilaian kelayakan peminjam masih dilakukan secara manual. Pendekatan ini cenderung lambat, subjektif, dan berisiko menghasilkan keputusan yang kurang akurat. Penelitian ini bertujuan untuk membangun model prediksi kelayakan peminjam menggunakan algoritma Support Vector Machine (SVM) sebagai solusi berbasis machine learning yang lebih efisien dan objektif. Sebanyak 1.000 data riwayat pinjaman diolah menggunakan tools RapidMiner dengan mempertimbangkan variabel: gaji, lama bekerja, besar pinjaman, angsuran per bulan, status pegawai, pengeluaran bulanan, jumlah tanggungan, status rumah, umur, dan nilai jaminan. Evaluasi model dilakukan menggunakan confusion matrix dan metrik klasifikasi seperti akurasi, presisi, recall, dan kappa. Hasil menunjukkan bahwa model SVM mencapai akurasi  90,05%, presisi 90,13%, recall 90,05%, dan f1 score 90,08%, yang mencerminkan performa model yang sangat baik dalam mengklasifikasikan kelayakan peminjam. Penerapan metode ini memberikan kontribusi penting dalam pengembangan sistem pendukung keputusan berbasis data di lingkungan koperasi. Temuan ini memperluas wawasan keilmuan di bidang keuangan mikro dan mendukung penerapan teknologi kecerdasan buatan dalam pengambilan keputusan yang lebih tepat, cepat, dan akurat.Kata Kunci: koperasi; kredit macet; machine learning; prediksi kelayakan; SVM  
OPTIMIZING THE SELECTION OF THE BEST EDUCATIONAL TEACHING AIDS SUPPLIER IN DECISION-MAKING USING THE MOORA METHOD Rani, Maha; Christy, Tika; Ardiansyah, Ricki; Sovia, Rini
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 3 (2025): Juni 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i3.3883

Abstract

Abstract: In the business world, supplier selection plays a crucial role in ensuring smooth company operations. Suppliers are responsible for providing raw materials with consistent quality, timely delivery, and competitive prices. The supplier selection process requires evaluation based on various criteria such as product quality, availability, packaging, price, and warranty. Currently, SNM Store places orders by contacting suppliers one by one via telephone to inquire about item availability. This method is time-consuming and may lead to delays in fulfilling item requirements. To address this issue, a Decision Support System (DSS) is needed to assist in efficiently determining the best supplier. One method that can be used in this system is MOORA (Multi-Objective Optimization on the Basis of Ratio Analysis). MOORA is known to be effective in handling multi-criteria decision-making by simultaneously optimizing multiple objectives. This method also reduces subjectivity by assigning weights to each criterion and uses simple and fast calculations to evaluate the available alternatives. The objectives of this research are to identify the key criteria in supplier selection, apply the MOORA method in an efficient and user-friendly evaluation and selection process, and improve the operational efficiency of SNM Store in procurement so that item availability can be ensured in a timely manner. Keywords: decision support system ; MOORA; supplier Abstrak: Dalam dunia bisnis, pemilihan supplier memegang peranan penting dalam memastikan kelancaran operasional perusahaan. Supplier bertanggung jawab menyediakan bahan baku dengan kualitas konsisten, pengiriman tepat waktu, dan harga kompetitif. Proses seleksi supplier memerlukan evaluasi terhadap berbagai kriteria seperti kualitas produk, ketersediaan, pengemasan, harga, dan garansi. Toko SNM saat ini melakukan pemesanan dengan menghubungi supplier satu per satu melalui telepon untuk menanyakan ketersediaan barang. Metode ini memakan waktu dan dapat menyebabkan keterlambatan dalam pemenuhan kebutuhan barang. Untuk mengatasi hal tersebut, diperlukan sistem pendukung keputusan (Decision Support System) yang dapat membantu dalam menentukan supplier terbaik secara efisien. Salah satu metode yang dapat digunakan dalam sistem ini adalah MOORA (Multi-Objective Optimization on the Basis of Ratio Analysis). MOORA dikenal efektif dalam menangani keputusan multi-kriteria dengan mengoptimalkan berbagai tujuan secara bersamaan. Metode ini juga mengurangi subjektivitas melalui pemberian bobot pada tiap kriteria dan menggunakan perhitungan yang sederhana serta cepat dalam mengevaluasi alternatif yang tersedia. adapun tujuan dari penelitian ini adalah untuk mengidentifikasi kriteria-kriteria penting dalam pemilihan supplier, menerapkan metode MOORA dalam proses evaluasi dan seleksi yang efisien dan mudah digunakan, serta meningkatkan efisiensi operasional Toko SNM dalam hal pengadaan barang agar ketersediaan barang dapat terjamin tepat waktu. Kata kunci: MOORA; sistem penunjang keputusan; supplier; 
PREDICTION OF ON-TIME GRADUATION OF UNIVERSITAS ROYAL STUDENTS USING MULTIPLE LINEAR REGRESSION METHOD Rahmadani, Nurul; Kurniawan, Edi; Nurhasanah, Nurhasanah; Damanik, Wahdan
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 3 (2025): Juni 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i3.3893

Abstract

Abstract: On-time graduation is an important indicator in measuring the success of higher education and reflects the effectiveness of the academic process in higher education. Royal University, especially the Information Systems Study Program, still faces challenges in increasing the percentage of students who graduate on time. This study aims to identify factors that influence students' on-time graduation and build a prediction model using the multiple linear regression method. This method was chosen because it is able to analyze the simultaneous influence of several independent numeric variables on one dependent variable, making it suitable for studying the complex relationship between factors that influence student graduation. The independent variables analyzed in this study include GPA, parental income, and student part-time jobs with student graduation as the dependent variable. The results showed that parental income and part-time jobs had a significant positive effect on on-time graduation, while GPA had a negative effect. The model built had an R² value of 0.6153 and a standard error of 4.0653, indicating that the model was quite strong and accurate. These findings recommend Universitas Royal to strengthen the academic monitoring system and support working students, as well as design policies based on students' socio-economic conditions to increase the on-time graduation rate.Keywords: multiple linear regression; on-time graduation; students.  Abstrak: Kelulusan tepat waktu merupakan indikator penting dalam mengukur keberhasilan pendidikan tinggi serta mencerminkan efektivitas proses akademik di perguruan tinggi. Universitas Royal, khususnya Program Studi Sistem Informasi, masih menghadapi tantangan dalam meningkatkan persentase mahasiswa yang lulus tepat waktu. Penelitian ini bertujuan untuk mengidentifikasi faktor-faktor yang memengaruhi kelulusan tepat waktu mahasiswa serta membangun model prediksi menggunakan metode regresi linear berganda. Metode ini dipilih karena mampu menganalisis pengaruh simultan beberapa variabel independen numerik terhadap satu variabel dependen, sehingga sesuai untuk mengkaji hubungan kompleks antar faktor yang memengaruhi kelulusan mahasiswa. Variabel independen yang dianalisis dalam penelitian ini meliputi IPK, penghasilan orangtua, dan pekerjaan sambilan mahasiswa dengan kelulusan mahasiswa sebagai variabel dependen. Hasil penelitian menunjukkan bahwa penghasilan orangtua dan pekerjaan sambilan berpengaruh positif signifikan terhadap kelulusan tepat waktu, sedangkan IPK justru memiliki pengaruh negatif. Model yang dibangun memiliki nilai R² sebesar 0,6153 dan standar error 4,0653, menandakan model cukup kuat dan akurat. Temuan ini merekomendasikan Universitas Royal untuk memperkuat sistem monitoring akademik dan mendukung mahasiswa yang bekerja, serta merancang kebijakan berbasis kondisi sosial-ekonomi mahasiswa guna meningkatkan angka kelulusan tepat waktu.Kata kunci: kelulusan tepat waktu; mahasiswa; regresi linear berganda.
FEATURE ALIGNMENT OF THE INTERNAL QUALITY AUDIT SYSTEM BASED ON PPEPP Jollyta, Deny; Hajjah, Alyauma; Mukhsin, Mukhsin; Prihandoko, Prihandoko
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 3 (2025): Juni 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i3.3896

Abstract

Abstract: The Ministry of Education, Culture, Research, and Technology, has developed guidelines for the Internal Quality Assurance System or known as SPMI, that is being implemented through the Internal Quality Audit (IQA) with the PPEPP cycle, namely Determination (P), Implemen-tation (P), Evaluation (E), Control (P), and Improvement (P). Some universities have implemented IQA with system. The problem is that the system does not line well with the PPEPP cycle, which results in unsatisfactory audit results. The purpose of this study is to evaluate how well the university-owned AQI system features in line the PPEPP cycle and to highlight development opportunities. The method used Feature Oriented Domain analysis (FODA) and Acceptance Testing. This study delivered an analysis of IQA system features that consistent with PPEPP. The FODA results were validated by expert and tested with User Acceptance Test (UAT) with 89.98% user response that the system is acceptable. The research contributes to universities' understanding of the features necessary in the AQI system, which has an impact on the perfection of the university AQI system design in accordance with the PPEPP cycle.            Keywords: FODA; IQA system; PPEPP cycle; SPMI  Abstrak: Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi telah menyusun pedoman Sistem Penjaminan Mutu Internal atau yang dikenal dengan SPMI, yang diimplementasikan melalui Audit Mutu Internal (AMI) dengan siklus PPEPP, yaitu Penetapan (P), Pelaksanaan (P), Evaluasi (E), Pengendalian (P), dan Peningkatan (P). Beberapa perguruan tinggi telah mengimplementasikan AMI dengan sistem. Permasalahannya, sistem tersebut tidak sejalan dengan siklus PPEPP, sehingga hasil audit kurang memuaskan. Tujuan dari penelitian ini adalah untuk mengevaluasi seberapa baik fitur sistem AMI milik perguruan tinggi sejalan dengan siklus PPEPP dan menyoroti peluang pengembangan. Metode yang digunakan adalah analisis Feature Oriented Domain (FODA) dan Acceptance Testing. Penelitian ini menghasilkan analisis fitur sistem AMI yang konsisten dengan PPEPP. Hasil FODA divalidasi oleh ahli dan diuji dengan User Acceptance Test (UAT) dengan 89,98% respon pengguna bahwa sistem dapat diterima. Penelitian ini memberikan kontribusi terhadap pemahaman universitas terhadap fitur-fitur yang diperlukan dalam sistem AMI, yang berdampak pada kesempurnaan desain sistem AMI universitas sesuai dengan siklus PPEPP. Kata kunci: FODA; siklus PPEPP; sistem AMI; SPMI
DEVELOPMENT OF A WEB-BASED POINT OF SALE APPLICATION US-ING THE LARAVEL FRAMEWORK Apriani, Rika; Haerani, Reni; Nugroho, Praditya Adi; Farisi, Imam
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 3 (2025): Juni 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i3.3918

Abstract

Abstract: The development of information technology encourages businesses to take over digital systems in business operations, even in the sales process. The Point of Sales (POS) system is the leading solution for recording transactions, managing stock, and creating sales reports efficiently. This study aims to develop a POS application based on a website and make it easier for administrators to manage sales transactions, making them faster and more efficient. This system is made with a structured Agile Development method, requirements, design, development, testing, deployment, and implementation. The framework used is the Laravel framework, with system testing conducted using BlackBox. The test results show that the system is on track and that the efficiency of the transaction and reporting process can be increased. A web-based basis allows users to manage their business more easily in real time because this application is flexible and can be used on various devices.            Keywords: agile model;laravel;point of sales; websites  Abstrak: Pengembangan teknologi informasi mendorong bisnis untuk mengambil alih sistem digital dalam operasi bisnis, bahkan dalam proses penjualan. Sistem Point of Sales (POS) adalah solusi utama untuk merekam transaksi, mengelola stok dan membuat laporan penjualan secara efisien. Tujuan dari penelitian ini adalah untuk mengembangan aplikasi POS berdasarkan situs web dan memudahkan administrator dalam mengelola transaksi penjualan, membuatnya lebih cepat dan lebih efisien. Sistem ini dibuat dengan metode Agile Development yang terstruktur, requirement, design, development, testing, deployment, dan implementation serta kerangka kerja yang digunakan yaitu framework Laravel dengan pengujian sistem menggunakan Blackbox. Hasil pengujian menunjukkan bahwa sistem berada di jalur dan bahwa efisiensi proses transaksi dan pelaporan dapat meningkat. Dengan berbasis web memungkinkan pengguna untuk lebih mudah mengelola bisnisnya secara real time, karena aplikasi ini fleksibel melalui berbagai perangkat. Kata kunci: model agile;laravel;point of sales;website
DEVELOPMENT OF AN AUGMENTED REALITY APPLICATION FOR LEARNING THE VOLUME AND SURFACE AREA OF THREE-DIMENSIONAL SHAPES Sapta, Andy
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 4 (2025): September 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i4.4056

Abstract

Abstract: This study focuses on the development of an Augmented Reality (AR)–based learning application designed to assist students in understanding the mathematical concepts of volume and surface area of three-dimensional geometric shapes. The development process adopted the Multimedia Development Life Cycle (MDLC) model, which consists of six systematic stages: concept, design, material collecting, assembly, testing, and distribution. The research concentrated on the development and expert validation stages. Validation results from content and media experts indicate that the application meets pedagogical and technical feasibility standards. The content expert confirmed that the materials align with the national mathematics curriculum and are presented in a clear, contextual, and accurate manner, while the media expert highlighted the user-friendly interface, interactive features, and visual appeal of the application. Theoretically, this AR-based medium bridges the gap between abstract mathematical concepts and concrete visualization by enabling students to interact directly with virtual 3D objects. Practically, the application enhances learning motivation and engagement by providing dynamic, interactive experiences. Overall, this research contributes to the advancement of educational technology by offering a systematic model for developing AR-based learning media that support active and meaningful learning in the digital era. Keywords: Augmented Reality; geometry learning; surface area ; volume
IMPLEMENTATION OF DALY BMS AND MODULXHM604 AS A BATTERY PACK FOR ECGO2 ELECTRIC MOTORCYCLES TO IMPROVE SAFETY, CAPACITY AND FAST CHARGING Amin, Muhammad; Ricki Ananda
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 12 No. 1 (2025): Desember 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v12i1.4113

Abstract

Abstrack: This research aims to improve battery performance and safety on the ECGO2 electric motorcycle by re-assembling the battery system using 18650 lithium cells, Daly BMS 13S/7A battery management system, and XH-M604 module. The configuration used is 13S5P (65 cells), resulting in a total voltage of 48.1 V and a capacity of 14 Ah, or equivalent to 673.4 Wh of energy. Compared to the ECGO2 built-in battery that requires 4-7 hours of charging time, this system is able to speed up charging to ±1.6 hours using a 7 A current charger. Test results using an oscilloscope show that the voltage of the assembled battery is more stable under load than that of a single battery, with minimal ripple. The estimated operating time of an 800 W electric motor using a 673.4 Wh battery is about 50 minutes. To achieve 2 hours of operation, the 13S10P configuration or energy-saving mode (400-500 W) can be used. The system is also more cost-effective at Rp2,678 per Wh compared to the manufacturer's version of Rp4,464 per Wh, as well as improved safety against leakage and overheating. Keywords: 18650 lithium battery; daly bms; electric motorcycle; fast charging. Abstrak: Penelitian ini bertujuan untuk meningkatkan performa dan keamanan baterai pada sepeda motor listrik ECGO2 dengan merakit ulang sistem baterai menggunakan sel lithium 18650, sistem manajemen baterai Daly BMS 13S/7A, dan modul XH-M604. Konfigurasi yang digunakan adalah 13S5P (65 sel), menghasilkan tegangan total 48,1 V dan kapasitas 14 Ah, atau setara dengan energi 673,4 Wh. Dibandingkan baterai bawaan ECGO2 yang memerlukan waktu pengisian 4–7 jam, sistem ini mampu mempercepat pengisian menjadi ±1,6 jam menggunakan charger arus 7 A. Hasil pengujian menggunakan osiloskop menunjukkan bahwa tegangan baterai rakitan lebih stabil di bawah beban dibandingkan baterai tunggal, dengan ripple minimal. Estimasi lama pengoperasian motor listrik 800 W menggunakan baterai 673,4 Wh adalah sekitar 50 menit. Untuk mencapai 2 jam pengoperasian, dapat digunakan konfigurasi 13S10P atau mode hemat energi (400–500 W). Sistem ini juga lebih hemat biaya dengan efisiensi harga Rp2.678 per Wh dibandingkan Rp4.464 per Wh versi pabrikan, serta meningkatkan keamanan terhadap kebocoran dan panas berlebih. Kata kunci: baterai lithium 18650; daly bms; sepeda motor listrik; pengisian daya cepat.
ANALYSIS OF THE ACCEPTANCE OF THE SINAGA ATTENDANCE APPLICATION AT SMA NEGERI 1 JATILAWANG USING THE TECHNOLOGY ACCEPTANCE MODEL (TAM) Sabaniyah, Arbangi Puput; Yunita, Ika Romadhoni; Subarkah, Pungkas
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 12 No. 1 (2025): Desember 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v12i1.4205

Abstract

This study analyzes the acceptance of teachers and ASN employees of the SINAGA (Sistem Informasi Layanan Kepegawaian) attendance application at SMA Negeri 1 Jatilawang using a modified Technology Acceptance Model (TAM). The model was extended by incorporating two external variables: Information Quality and Complexity. This explanatory quantitative research employed the Structural Equation Modeling–Partial Least Square (SEM-PLS) method involving 60 respondents who are civil servants, consisting of teachers and administrative staff. The results reveal that Information Quality has a positive and significant influence on both Perceived Usefulness (PU) and Perceived Ease of Use (PEOU), while Complexity does not show a significant effect on either variable. Furthermore, PEOU and PU have a positive impact on Attitude Toward Use (ATU), which subsequently affects Behavioral Intention to Use (BIU). Behavioral intention, in turn, strongly influences Actual Use (AU). These findings indicate that teachers’ acceptance of the SINAGA digital attendance system in educational settings is primarily driven by information quality and users’ positive attitudes rather than by system complexity. Theoretically, this study contributes to the expansion of TAM application in the educational context. Practically, it provides valuable insights for improving the effectiveness of SINAGA implementation through better information quality and enhanced user experience.