cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta timur,
Dki jakarta
INDONESIA
International Journal of Remote Sensing and Earth Sciences (IJReSES)
ISSN : 02166739     EISSN : 2549516X     DOI : -
Core Subject : Science,
International Journal of Remote Sensing and Earth Sciences (IJReSES) is expected to enrich the serial publications on earth sciences, in general, and remote sensing in particular, not only in Indonesia and Asian countries, but also worldwide. This journal is intended, among others, to complement information on Remote Sensing and Earth Sciences, and also encourage young scientists in Indonesia and Asian countries to contribute their research results. This journal published by LAPAN.
Arjuna Subject : -
Articles 320 Documents
STUDY OF SUSPENDED SEDIMENT DISTRIBUTION USING NUMERICAL MODEL AND SATELLITE DATA IN BENOA BAY-BALI, INDONESIA I Gede Hendrawan; Koji Asai
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 5,(2008)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (282.515 KB) | DOI: 10.30536/j.ijreses.2008.v5.a1231

Abstract

The distribution of suspended sediment and its concentration within Benoa bay was calculated by a numerical model and utilization of satellite data. A two-dimensional coupled hydrodynamic-transport model for the distribution characteristics of suspended sediment within the bay is presented here. Three-river discharges and sewerage installation outlets were used as source points of the suspended sediment. The model result showing the distribution of suspended sediment pattern follows the tidal level dynamic. It is concerned to the current pattern generated by tidal. The ALOS/AVNIR-2 satellite data also have good capability to investigate the suspended sediment distribution in coastal area. By using visible channels and developed regression of Digital Number (DNs) of AVNIR-2 data and observation data, the distribution of suspended sediment in Benoa bay was generated. Numerical model and satellite data quantitatively have the same tendency, but slightly different value. It is because of the differences in pollutant sources point. Keywords: Numerical model, satellite data, suspended sediment
IJReSES Vol. 14 No. 2 December 2017 Journal Editor
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 14, No 2 (2017)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (9380.641 KB)

Abstract

IJReSES Vol. 14 No. 2 December 2017
STUDY OF MODIS-AQUA DATA FOR MAPPING TOTAL SUSPENDED MATTER (TSM) IN COASTAL WATERS BAMBANG TRISAKTI; - PARWATI; SYARIF BUDIMAN
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 2(2005)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (439.756 KB) | DOI: 10.30536/j.ijreses.2005.v2.a1355

Abstract

The MODIS-Aqua data have been studied to map TSM distribution in coastal waters. TSM algorithm model for MODIS data with spatial resolution of 250 m, 500 m and 1000 m was developed by correlating the TSM derived from spectral values of MODIS and the TSM derived from Landsat-7 ETM data using the calibrated algorithm. Statistical test was conducted to see normality of data and level of influence from both parameters. Analysis was conducted to see the change of spectral value from bands of MODIS data with resolution of 1000 m towards the change of level of TSM concentration. The results shows that the TSM algorithm model is in the form of power (Xa) with the highest correlation coefficient is obtained from the correlation between the Landsat TSM value with the quantification of band 1 and band 2 of MODIS data for spatial resolution 250 m, ratio of band 4 and band 3 for spatial resolution 500 m, and ratio of band 13 and 11 for spatial resolution 1000 m. The pattern of TSM distribution in coastal waters can be identified in more accurate using MODIS data with resolution of 250 m and 500 m. The analysis result of the curve of MODIS spectral value data with resolution 1000 m shows that the change of TSM concentration influences significantly to the form of curve of spectral value, especially for band 11 - 16 ( visible green, red and NIR). Keywords : MODIS-Aqua, Landsat, TSM algorithm model, spatial resolution, curve of spectral value
EVALUATION OF SPOT-5 IMAGE FUSION USING MODIFIED PAN-SHARPENING METHODS Sukentyas Estuti Siwi
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 11, No 2 (2014)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1124.613 KB) | DOI: 10.30536/j.ijreses.2014.v11.a2609

Abstract

Image fusion, commonly known as pan-sharpening, is a method that combines two data: a panchromatic image that has geometric detail information with the highest spatial resolution and multi-spectral image that has the highest color information but with the lowest resolution. Pan-sharpeningis very important for various remote sensing applications, such as to improve the image classification, to change the detection using temporal data, to increase the geometric, image segmentation, and to improve the visibility of certain object that does not appear on certain data. This study aims to compare the existing pan-sharpening methods such as Brovey, Brovey modification using green and red band, Gram-Schmidt, HPF, Multiplicative, and SFIM.The quality of the pan-sharpening result should be evaluated, this study used Universal Image Quality Index (UIQI/Q index); this evaluation methodgives the opportunity to choose which method is best to provide the most similar spectral information with the original multispectral image. A pan-sharpening qualitative analysis shows that there has been a sharpening process on all pan-sharpening images. Based on spectral visualization (color display), several pan-sharpening methods such as HPF multiplicative method provides brighter colorsand Brovey transformation method displays dark colors. Gram-Schmidt method also provides a different color from the original multispectral image. A pan-sharpening quantitative analysis shows that the best pan-sharpening method with UIQI value> 0.9 is Brovey modification using green and red band. This is due to the green band (500-590 nm) and the red band(610-680 nm) wavelength are in the panchromatic band (480-710 nm) of the SPOT-5 Data. 
PRESENT UNDERSTANDING OF ACEH TSUNAMI (APPLICATIONS OF DATA FROM FIELD TO SATELLITE OBSERVATIONS) I Gede Hendrawan; Bambang Sukresno; Yasuhiro Sugimori
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 4,(2007)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (571.254 KB) | DOI: 10.30536/j.ijreses.2007.v4.a1222

Abstract

Application of data from field to satellite observation and simulation has been made as present understanding of Aceh tsunami. Tsunami has attracted attention after struck Aceh in December 26th 2004, generated by a strong eartquake with magnitude Mw=9.0. The eatrhquake triggered giant tsunami waves that propagated throughout the Indian Ocean, causing extreme inundation and destruction along the northern and western coast of Sumatra. Within hours, the tsunami devastated the distant shores of Thailand to east as well as Sri Lanka, India and Maldives to the west. The tsunami also caused deaths, and destruction in Somalia and other nations of East Africa. The tsunami was recorded on tidal stations throughout the Indian Oceans in worldwide. Unlike the Pacific, the Indian Ocean does not yet have a network of deep-ocean pressure sensors, and so coastal tide gauges provide the only direct measurement of Indian Ocean stunami amplitudes. We had many lessons and basic knowledge which had already been learned from this tragic event in the Indian Ocean. Many more lessons should be learned in the near future as this tragedy unfolds and reverals many failures to value and protect human life in this neglected region of the world. Keywords: Tsunami, Earthquake, Indian Ocean, Aceh.
SPATIAL PROJECTION OF LAND USE AND ITS CONNECTION WITH URBAN ECOLOGY SPATIAL PLANNING IN THE COASTAL CITY, CASE STUDY IN MAKASSAR CITY, INDONESIA Syahrial Nur Amri; Luky Adrianto; Dietriech Geoffrey Bengen
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 14, No 2 (2017)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1311.146 KB) | DOI: 10.30536/j.ijreses.2017.v14.a2715

Abstract

The arrangement of coastal ecological space in the coastal city area aims to ensure the sustainability of the system, the availability of local natural resources, environmental health and the presence of the coastal ecosystems. The lack of discipline in the supervision and implementation of spatial regulations resulted in inconsistencies between urban spatial planning and land use facts. This study aims to see the inconsistency between spatial planning of the city with the real conditions in the field so it can be used as an evaluation material to optimize the planning of the urban space in the future. This study used satellite image interpretation, spatial analysis, and projection analysis using markov cellular automata, as well as consistency evaluation for spatial planning policy. The results show that there has been a significant increase of open spaces during 2001-2015 and physical development was relatively spreading irregularly and indicated the urban sprawl phenomenon. There has been an open area deficits for the green open space in 2015-2031, such as integrated maritime, ports, and warehousing zones. Several islands in Makassar City are predicted to have their built-up areas decreased, especially in Lanjukang Island, Langkai Island, Kodingareng Lompo Island, Bone Tambung Island, Kodingareng Keke Island and Samalona Island. Meanwhile, the increase of the built up area is predicted to occur in Lumu Island, Barrang Caddi Island, Barrang Lompo Island, Lae-lae Island, and Kayangan Island. The land cover is caused by the human activities. Many land conversions do not comply with the provision of percentage of green open space allocation in the integrated strategic areas, established in the spatial plan. Thus, have the potential of conflict in the spatial plan of marine and small islands in Makassar City.
VULNERABILITY LEVEL MAP OF TSUNAMI DISASTER IN PANGANDARAN BEACH, WEST JAVA Iqoh Faiqoh; Jason Lumban Gaol; Marisa Mei Ling
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 10, No 2 (2013)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1251.179 KB) | DOI: 10.30536/j.ijreses.2013.v10.a1848

Abstract

Indonesia is located in a seismic active region where tsunami often occur. One of tsunami prone areas in Indonesia is southern coast of Java, such as the coastal areas of Pangandaran, West Java. One of the instruments in the tsunami disaster mitigation is the vulnerability map of coastal region on tsunami. Analyses of tsunami vulnerability assessment was performed by using merger or overlay methods in Geographic Information Systems (GIS). The parameters used to analyze tsunami vulnerability level were elevation, topography, landuse, coastal border, and river banks. The vulnerability were divided into five classes i.e., very high, high, medium, low, and very low. Results showed that Pananjung, Babakan, Pangandaran (Pangandaran District); and Sukaresik and Cikembulan (Sidamulih District) sub-districts were identified as areas of very high level of tsunami vulnerability with total area of 737.703 hectares. Areas with low level of vulnerability were Pagergunung, Putrapinggan, and Kersaratu sub-districts with total area of 4,816.204 hectares.
DEM GENERATION FROM STEREO ALOS PRISM AND ITS QUALITY IMPROVEMENT Bambang Trisakti; Atriyon Julzarika
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 8, (2011)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1333.66 KB) | DOI: 10.30536/j.ijreses.2011.v8.a1740

Abstract

Digital elevation mode (DEM) is important data for supporting many activities. One of DEM generation methods is photogrametry of optical stereo data based on image matching and collinear correlation. The problem of DEM from optical stereo data is bullseye due to low contrast in relatively flat area and cloud cover. The research purpose is to generate DEM from ALOS PRISM stereo data level 1B2R and improve the quality of the DEM. DEM was generated using Leica Photogrametry Suite (LPS) software. The study area is located in Sragen district and its vicinity. The process needed three dimension of Ground Control Point (GCP) XYZ, as input data for collinear correlation. Ground measurement was conducted using differential GPS to collect 30 GCPs that used for input (21 GCPs) and for accuracy evaluation (9 GCPs). The generated DEM has good detail (10 m), but it has bullseye which mostly occurred in relatively flat area. The quality improvement was carried out by combining the DEM with SRTM DEM (30 m) using DEM fusion method. Both DEMs were processed for geoids correction (EGM 2008), co-registration and histogram normalization. The fusion method was conducted by considering height error map (HEM) of each DEM. The quality of fused DEM was evaluated by comparing HEM, the number of bullseye, and vertical accuracy before and after the fusion. The result shows that DEM fusion can preserve detail information of the DEM and significantly reduce the bullseye (decreasing more than 66% of bullseye). It also shows the improvement (from 7.6 m to 7.3 m) of vertical accuracy. Keywords: Digital Elevation model, Optical stereo data, ALOS PRISM, DEM fusion, Bullseye
Front Pages IJReSES Vol. 14, No. 1(2017) Editorial Journal
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 14, No 1 (2017)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (700.951 KB)

Abstract

Front Pages IJReSES Vol. 14, No. 1(2017)
THE FLUCTUATION OF CHLOROPHYLL-A CONCENTRATION DERIVED FROM SATELLITE IMAGERY AND CATCH OF OILY SARDINE (SARDINELLA LEMURU0)IN BALI STRAIT J. LUMBAN GAOL; - WUDIANTO; - B. P. PASARIBU; - D. MANURUNG; - R. ENDRIANI
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 1,No. 1(2004)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (292.183 KB) | DOI: 10.30536/j.ijreses.2004.v1.a1325

Abstract

The investigation is aimed to know the relationship between chlorophyll-a (chl-a) concentration and the abundance of Oily sardine (Sardinella lemuru), in Bali Strait. A time series of monthly mean chl-a data derived from Ocean Color Thermal Scanner (OCTS) sensor and Sea-viewing Wide Field-of View Sensor (SeaWiFS) during 1997-1999 are used in this study. Monthly Sardinella lemuru catch during 1997-1999 are obtained from fish landing data. The abundance of Sardinella lemuru is determined from acoustic data conducted in Bali Strait in September 1998 and May 1999. The result shows that the fluctuation of chlorophyll-a concentration in Bali Strait is influenced by monsoon and global climate change phenomena such as Dipole Mode (DM) event. During southeast Monsoon the upwelling process occurred around Bali Strait, so that the chl-a concentration is increased and during DM event occurred positive anomaly of chl-a concentration. The catch of Sardinella lemuru in Bali Strait is fluctuated during 1997-1999. The correlation between chl-a concentration and lemuru catch is positive and significant with certain time lag. Key words: Chlorophyll-a, Sardinella lemuru, Bali Strait, Satellite imagery

Page 11 of 32 | Total Record : 320