cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta timur,
Dki jakarta
INDONESIA
International Journal of Remote Sensing and Earth Sciences (IJReSES)
ISSN : 02166739     EISSN : 2549516X     DOI : -
Core Subject : Science,
International Journal of Remote Sensing and Earth Sciences (IJReSES) is expected to enrich the serial publications on earth sciences, in general, and remote sensing in particular, not only in Indonesia and Asian countries, but also worldwide. This journal is intended, among others, to complement information on Remote Sensing and Earth Sciences, and also encourage young scientists in Indonesia and Asian countries to contribute their research results. This journal published by LAPAN.
Arjuna Subject : -
Articles 320 Documents
STUDY ON VARIABILITY MECHANISM OF 1997/1998 ENSO IN PACIFIC OCEAN AND EASTERN PART OF INDONESIAN ARCHIPELAGO Luh Made Chandra; Astiti Ratnasari; I Gede Hendrawan; I Wayan Gede Astawa Karang; Yasuhiro Sugimori
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 3,(2006)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (771.624 KB) | DOI: 10.30536/j.ijreses.2006.v3.a1210

Abstract

El Nino-Southern Oscillation (ENSO) is one of the most important climate anomalies humans are concerned about. It brought many changes in physical of the ocean. This phenomenon causes changes in sea surface temperature (SST). During El-Nino condition, the SST is much warmer in eastern side of Pacific Ocean than normal condition, and during La-Nina event the SST in eastern Pacific Ocean is cooler than normal condition. From July 1997, the warm water has spread from the western Pacific Ocean towards the east and the winds in the western Pacific were blowing strongly towards the east, pushing the warm water eastward on December 1997 and January 1998. Strong La-Nina condition water extended farther westward than usual. In October 1997, during El-Nino event 1997, the SST in eastern part of Indonesia Archipelago was cooler. The varies of SST in PacificOcean during El-Nino 1997 was influenced the Indonesian Through Flow (ITF). During El-Nino event 1997, surface current flown strongly from Pacific Ocean to the Indian Ocean On the other hand, since March 1998 the surface current inversed from Indonesian Sea to the Pacific Ocean. Keywords: ENSO, SST, ITF.
ANALYSIS ON THE QUALITY OF AEROSOL OPTICAL THICKNESS DATA DERIVED FROM NPP VIIRS AND AQUA MODIS OVER WESTERN REGION OF INDONESIA Erna Sri Adiningsih; Andy Indrajat; Noriandini D. Salyasari
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 12, No 2 (2015)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1445.501 KB) | DOI: 10.30536/j.ijreses.2015.v12.a2707

Abstract

Preliminary analysis on quality data of Aerosol Optical Thickness/Depth or AOT/AOD derived from NPP VIIRS EDR (Environmental Data Record) has been done in previous work. Qualitative analysis of the previous work revealed that AOT data of VIIRS had insufficient quality due to some factors such as sun glint and cloud cover. However the accuracy of AOT VIIRS data over western area of Indonesia has not been investigated. Therefore this paper describes further analysis on AOT VIIRS data quality and accuracy. Comparison with AOT derived from Aqua MODIS data was implemented since AOT of MODIS has verified well with AOT data from field observation. Examination on cloud masking intermediate product of VIIRS was done for its importance in AOT data processing and persistent cloud cover obstacle over Indonesia. We used VIIRS and MODIS data archieved by LAPAN ground station. Further analysis on sun glint and cloud masking images indicates that these two intermediate products predominantly affect the quality of AOT from VIIRS and MODIS over the study areas. Compared with AOT of MODIS, AOT of VIIRS seems to result more pixels consisting AOT information over the same area and date. The statistical results showed that AOT values of VIIRS highly correlated with AOT values of MODIS with R2 of 78%. The accuracy of AOT derived from VIIRS was adequate as indicated by RMSE of  0.0977 or less than 0.5 for the samples over Sumatra, Borneo, and Java islands. Visual comparison of AOT images indicates that VIIRS data could result more detailed AOT values than MODIS data. Therefore the AOT of VIIRS data could be recommended for further applications in western area of Indonesia.  
DERIVING INHERENT OPTICAL PROPERTIES FROM MERIS IMAGERY AND IN SITU MEASUREMENT USING QUASI-ANALYTICAL ALGORITHM Wiwin Ambarwulan; - Widiatmaka; Syarif Budhiman
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 10, No 1 (2013)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (287.639 KB) | DOI: 10.30536/j.ijreses.2013.v10.a1835

Abstract

The  paper  describes inherent optical properties  (IOP)  of  the  Berau  coastal  waters  derived from in  situ measurements  and Medium  Resolution  Imaging  Spectrometer  (MERIS) satellite  data. Field  measurements  of optical  water,  total  suspended  matter  (TSM), and  chlorophyll-a  (Chl-a) concentrations were carried out during the dry season of 2007. During this periode, only four MERISdata were  coincided with in  situ measurements on 31 August  2007. The MERIS  top-of-atmosphere radiances were atmospherically corrected using the MODTRAN radiative transfer model. The in situ optical  measurement  have  been  processed  into apparent optical properties  (AOP) and sub  surface irradiance. The remote sensing reflectance of in situ measurement as well as MERIS data were inverted into  the  IOP  using quasi-analytical algorithm  (QAA).  The  result  indicated  that coefficient  of determination (R 2) of backscattering coefficients of suspended particles (bbp) increased with increasing wavelength,  however  the  R2 of  absorption  spectra  of  phytoplankton  (aph)  decreased  with  increasing wavelength.
TREND IN PRECIPITATION OVER SUMATERA UNDER THE WARMING EARTH Iskhaq Iskandar; Muhammad Irfan; Fadli Syamsuddin; Akmal Johan; Pradanto Poerwono
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 8, (2011)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (737.415 KB) | DOI: 10.30536/j.ijreses.2011.v8.a1737

Abstract

A long-term climate variations in the western Indonesian region (e.g. Sumatera) were evaluated using precipitation data as a proxy. The result showed that there was a long-term climate variation over Sumatera region indicated by a decreasing trend in precipitation (drying trend). Moreover, the long-term precipitation trend has a strong seasonality. Remarkable decreasing trend at a rate of 3.9 cm/year (the largest trend) was observed during the northwest monsoon (DJF) season, while the smallest decreasing trend of 1.5 cm/year occurred during the southeast monsoon (JJA) season. This result suggested that the Sumatera Island experienced a drying trend during the northwest monsoon season, and a dryer condition will be more frequently observed during the southeast monsoon season. The long-term precipitation over the Sumatera Island was linked to coupled air-sea interactions in the Indian and Pacific oceans. The connection between the seasonal climate trends and sea surface temperature (SST) in the Indian and Pacific oceans was demonstrated by the simultaneous correlations between the climate indices (e.g. Dipole Mode Index (DMI) and the Niño3.4 index) and the precipitation over the Sumatera Island. The results suggested that both the Indian Ocean Dipole (IOD) and the El Niño-Southern Oscillation Index (ENSO) have significant correlation with precipitation. However, remarkable correlations were observed during the fall transition of the IOD event. Keywords: Climate variations, Dry season, Precipitation, Sumatera and Kalimantan, Wet season.
CHLOROPHYLL-A CONCENTRATIONS ESTIMATION FROM AQUA-MODIS AND VIIRS-NPP SATELLITE SENSORS IN SOUTH JAVA SEA WATERS Rayhan Nuris; Jonson Lumban Gaol; Teguh Prayogo
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 12, No 1 (2015)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (805.541 KB) | DOI: 10.30536/j.ijreses.2015.v12.a2673

Abstract

This study aimed to estimate the concentration of chlorophyll-a from satellite imagery of National Polar-Orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) in the south Java Sea waters and compare it to the concentrations of chlorophyll-a estimation result from the MODIS-Aqua satellite. NPP satellite had Visible/Infrared Imager Radiometer Suite (VIIRS) sensors which performance was same as Moderate Resolution Imaging Spectroradiometer (MODIS) sensor with a better spatial resolution. This study used daily satellite imagery of VIIRS-NPP for the period of September 2012 to August 2013. The algorithm that was used to estimate the concentration of chlorophyll-a was Ocean Color 3-band ratio (OC-3). The results showed that the spatial distribution pattern of chlorophyll-a concentration between VIIRS - NPP sensor and MODIS had the same pattern, but the estimation of chlorophyll-a concentration from the MODIS sensor was higher than VIIRS -NPP sensor. The concentration of chlorophyll-a showed that there were spatial and temporal variation in the south Java Sea waters. Generally, concentrations of chlorophyll-a was higher in East monsoon than West monsoon.
TWO VIEWING THEORY ON ATMOSPHERE CORRECTION IN OCEAN COLOR ALGORITHM Sisir Kumar Dash; Tasuku Tanaka; Ryutaro Tateishi
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 3,(2006)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (481.127 KB) | DOI: 10.30536/j.ijreses.2006.v3.a1201

Abstract

A new algorithm for retrieving optical thickness and surface reflectance, data in the visible bands from satellites is developed. The proposed algorithm is to solve the simultaneous equation of two unknown variables, i.e. aerosol optical thickness and surface reflectance (r). In term of difference from the conventional and, one directional retrieval algorithm, we do not need the spectral characteristics of aerosol. We solve the equation by forward calculation using the 6S transfer code. The two observational equations change linearly within the domain where we solve the solution. We estimate the chlorophyll-a concentration from the evaluated r. This method is validated against Global Imager (GLI) data, which has two independent data for one pixel in both tilting and nadir viewing. Keywords, GLI, 6S, Radiative Transfer, Reflectance, Rayleigh, Mie.
TIME SERIES ANALYSIS OF TOTAL SUSPENDED SOLID (TSS) USING LANDSAT DATA IN BERAU COASTAL AREA, INDONESIA Ety Parwati; Anang Dwi Purwanto
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 14, No 1 (2017)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (968.28 KB) | DOI: 10.30536/j.ijreses.2017.v14.a2676

Abstract

Water quality information is usually used for the first examination of the pollution.  One of the parameters of water quality is Total Suspended Solid (TSS), which describes the amount of matter of particles suspended in the water. TSS information is also used as initial information about waters condition of a region. TSS could be derive from Landsat data with several combinations of spectral channels to evaluate the condition of the observation area for both the waters and the surrounding land. The study aimed to evaluate Berau waters condition in Kalimantan, Indonesia, by utilizing TSS dynamics extracted from Landsat data. Validated TSS extraction algorithm was obtained by choosing the best correlation between  field data and image data. Sixty pairs of points had been used to build validated TSS algorithms for the Berau Coastal area. The algorithm was TSS = 3.3238 * exp (34 099 * Red Band Reflectance). The data used for this study were Landsat 5 TM, Landsat 7 ETM and Landsat 8 data acquisition in 1994, 1996, 1998, 2002, 2004, 2006, 2008 and 2013. For detailed evaluation, 20 regions were created along the watershed up to the coast. The results showed the fluctuation of TSS values in each selected region. TSS value increased if there was a change of any kind of land cover/land used into bareland, ponds, settlements or shrubs. Conversely, TSS value decreased if there was a wide increase of mangrove area or its position was very closed to the ocean.
ESTIMATION OF RADIOMETRIC PERFORMANCE OF ELEKCTRO-OPTICAL IMAGING SENSOR OF LOW EARTH EQUATORIAL ORBIT LAPAN SATTELITE Ahmad Maryanto; Andy Indradjad; Dinari Nikken Sirin; Ayom Widipaminto
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 9, No 1 (2012)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1187.537 KB) | DOI: 10.30536/j.ijreses.2012.v9.a1825

Abstract

Study  of  spectro-radiometric  performance  of  electro-optical  imager  which  is planned  to  be  launched  on  low  earth  equatorial  orbit  LAPAN  satellite  was  conducted through  simulative  calculation  of  image  irradiance  and  its  associated  generated  voltage  at the image detector output. Simulative calculation was applied to three scenarios of selected spectral  bands.  Those  spectral  bands  were  selected  spectra  (1),  which  consisted  of  spectral bands  B = (390-540 and 790-900) nm,  G = (470-610 and 700-900 )  nm, and R = (590-650 and 650-900) nm; selected spectra (2) consisted  of B1 = (390-540) nm,  G1 = (470-610) nm, and  R1  =  (590-650)  nm;  and  selected  spectra  (3)  consisted  of  B1(Green)  =  (525-605)  nm, B2(Red) = (630-690) nm, and B3(NIR) = (750-900) nm, on three scenarios of optical aperture or f-number (N)  2.8, 4.0, and  5.6.  Green grasses, dry  grasses, and conifers  were examples of the imaged target, chosen as representation of vegetations. Kodak KLI-8023 was used as the  optical  detector.  The  integration  time  was  assumed  3  miliseconds  which  correspond  to about 20 m ground sampling distance (GSD). Solar zenith angle were varying from 90 (early morning)  to  0  (solar  noon).  The  results  showed  that  option  (3)  of  selected  spectra,  as proposed  for  pushbroom  imager  of  LAPAN  satellite,  was  relatively  accepted  to  be implemented  and  complemented  with  f-number  4.0  of  optical  system  used.  Whereas simulation RGB color displayed  composed by R = B2(Red), G = B3(NIR), B = B1(Green) also showed a greenish color sense as expected for vegetation imaged target.
ESTIMATION OF TIDAL ENERGY DISSIPATION AND DIAPYCNAL DIFFUSIVITY IN THE INDONESIAN SEAS I Wayan Gede Astawa Karang; Fumihiko Nishio; Takahiro Osawa
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 7, No 1 (2010): Vol 7,(2010)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (8385.651 KB) | DOI: 10.30536/j.ijreses.2010.v7.a1542

Abstract

The Indonesian Seas separating the Indian Ocean from the West Pacific Oceanare representative regions of strong tidal mixing in the world oceans. In the present study,we first carry out numerical simulation of the barotropic tidal elevation field in theIndonesian Seas using horizontally two-dimensional primitive equation model. It is foundthat, to reproduce realistic tidal elevations in the Indonesian Seas, the energy lost by theincoming barotropic tides to internal waves within the Indonesian seas should be taken intoaccount. The numerical experiments show that the model predicted tidal elevations in theIndonesian Seas best fit the observed data when we take into account the baroclinic energyconversion in the Indonesian Seas ~86.1 GW for the M2 tidal constituent and ~134.6 GWfor the major four tidal constituents (M2, S2, K1, O1). For this baroclinic energy conversion,the value of Kñ averaged within the eastern area (Halmahera, Seram, Banda and MalukuSeas), the western area (Makassar and Flores Seas), and the southern area (Lombok Straitand Timor Passage) are estimated to be ~23 × 10-4 m2s-1, ~5 × 10-4 m2s-1, and ~10× 10-4m2s-1, respectively. This value is about 1 order of magnitude more than assumed for theIndonesian Seas in previous ocean general circulation models. We offer this study as awarning against using diapycnal diffusivity just as a tuning parameter to reproduce largescalephenomena.
Back Pages IJReSES Vol. 12, No. 2(2015) Editorial Journal
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 12, No 2 (2015)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3499.224 KB)

Abstract

Back Pages IJReSES Vol. 12, No. 2(2015)