cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta timur,
Dki jakarta
INDONESIA
International Journal of Remote Sensing and Earth Sciences (IJReSES)
ISSN : 02166739     EISSN : 2549516X     DOI : -
Core Subject : Science,
International Journal of Remote Sensing and Earth Sciences (IJReSES) is expected to enrich the serial publications on earth sciences, in general, and remote sensing in particular, not only in Indonesia and Asian countries, but also worldwide. This journal is intended, among others, to complement information on Remote Sensing and Earth Sciences, and also encourage young scientists in Indonesia and Asian countries to contribute their research results. This journal published by LAPAN.
Arjuna Subject : -
Articles 320 Documents
NUMERICAL CALCULATION OF PHOSPHATE TRANSPORT IN BENOA BAY, BALI I Gede Hendrawan; I komang Ardana
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 6,(2009)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (328.775 KB) | DOI: 10.30536/j.ijreses.2009.v6.a1237

Abstract

A computational model to study the phosphate transport in the coastal environment was presented. It calculation involves the external sources of photosphate matter from the river discharge. The phosphjate distribution within the bay forced by tidal current, was calculated by Pricenton Ocean Model (POM) 2-dimension (barotropic mode). The tidal current obtained from simulation, shown a reasonably good agreement with in-situ tidal level data at Benoa tidal gauge station. The phosphate transport is generated by two-river discharge within the bay and three sources respected by wastewater treatment in Nusa Dua Bali, vessel parking area and waste garbage dump in suwung, respectively. The result confirm that a good agreement with the experiment data carried out within the bay. Keywords : phosphate transport, Princeton Ocean Model (POM)
WATERMARKING METHOD OF REMOTE SENSING DATA USING STEGANOGRAPHY TECHNIQUE BASED ON LEAST SIGNIFICANT BIT HIDING Destri Yanti Hutapea; Octaviani Hutapea
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 15, No 1 (2018)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (575.07 KB) | DOI: 10.30536/j.ijreses.2018.v15.a2824

Abstract

Remote sensing satellite imagery is currently needed to support the needs of information in various fields. Distribution of remote sensing data to users is done through electronic media. Therefore, it is necessary to make security and identity on remote sensing satellite images so that its function is not misused. This paper describes a method of adding confidential information to medium resolution remote sensing satellite images to identify the image using steganography technique. Steganography with the Least Significant Bit (LSB) method is chosen because the insertion of confidential information on the image is performed on the rightmost bits in each byte of data, where the rightmost bit has the smallest value. The experiment was performed on three Landsat 8 images with different area on each composite band 4,3,2 (true color) and 6,5,3 (false color). Visually the data that has been inserted information does not change with the original data. Visually, the image that has been inserted with confidential information (or stego image) is the same as the original image. Both images cannot be distinguished on histogram analysis.  The Mean Squared Error value of stego images of  all three data less than 0.053 compared with the original image.  This means that information security with steganographic techniques using the ideal LSB method is used on remote sensing satellite imagery.
TECHNIQUE FOR IDENTIFYING BURNED VEGETATION AREA USING LANDSAT 8 DATA Bambang Trisakti; Udhi Catur Nugroho; Ani Zubaidah
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 13, No 2 (2016)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4795.851 KB) | DOI: 10.30536/j.ijreses.2016.v13.a2447

Abstract

During the last two decades, forest and land fire is a catastrophic event that happens almost every year in Indonesia.  Therefore, it is necessary to develop a technic to monitor forest fires using satellite data to obtain the latest information of burned area in a large scale area. The objective of this research is to develop a method for burned area mapping that happened between two Landsat 8 data recording on August 13rd and September 14th 2015. Burned area was defined as a burned area of vegetation. The hotspot distribution during the period August - September 2015 was used to help visual identification of burned area on the Landsat image and to verify the burned area resulted from this research. Samples were taken at several land covers to determine the spectral pattern differences among burned area, bare area and other land covers, and then the analysis was performed to determine the suitable spectral bands or indices and threshold values that will be used in the model. Landsat recorded on August 13rd before the fire was extracted for soil, while Landsat recorded on September 14th after the fire was extracted for burned area. Multi-temporal analysis was done to get the burned area occurring during the certain period. The results showed that the clouds could be separated using combination of ocean blue and cirrus bands, the burned area was extracted using a combination of NIR and SWIR band, while soil was extracted using ratio SWIR / NIR. Burned area obtained in this study had high correlation with the hotspot density of MODIS with the accuracy was around 82,4 %.
THREE-DIMENSIONAL SIMULATION OF TIDAL CURRENT IN LAMPUNG BAY: DIAGNOSTIC NUMERICAL EXPERIMENTS Alan Frendy Koropitan; Safwan Hadi; Ivonne M.Radjawane
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 3,(2006)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (748.866 KB) | DOI: 10.30536/j.ijreses.2006.v3.a1205

Abstract

Princeton Ocean Model (POM) was used to calculate the tidal current in Lampung Bay using diagnostic mode. The model was forced by tidal elevation, which was given along the open boundary using a global ocean tide model-ORITIDE. The computed tidal elevation at St. 1 and St 2 are in a good agreement with the observed data, but the computed tidal current at St 1 at depth 2 m is not good and moderate approximation is showed at depth 10 m. Probably, it was influenced by non-linier effect of coastal geometry and bottom friction because of the position of current meter, mooring closed to the coastline. Generally, the calculated tidal currents in all layers show that the water flows into the bay during flood tide and goes out from the bay during ebb tide. The tidal current becomes strong when passing through the narrow passage of Pahawang Strait. The simulation of residual tidal current with particular emphasis on predominant contituent of M2 shows a strong inflow from the western part of the bay mouth, up to the central part of the bay, then the strong residual current deflects to the southeast and flows out from the eastern part of the bay mouth. This flow pattern is apparent in the upper and lower layer. The other part flows to the bay head and froms an antic lockwise circulation in the small basin region of the bay head. The anticlockwise circulations are showed in the upper layer and disappear in the layer near the bottom. Keywords: POM, diagnostic mode, tidal current, residual current, Lampung Ba.
MANGROVE ABOVE GROUND BIOMASS ESTIMATION USING COMBINATION OF LANDSAT 8 AND ALOS PALSAR DATA Gathot Winarso; Yenni Vetrita; Anang D. Purwanto; Nanin Anggraini; Soni Darmawan; Doddy M. Yuwono
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 12, No 2 (2015)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (624.791 KB) | DOI: 10.30536/j.ijreses.2015.v12.a2687

Abstract

Mangrove ecosystem is important coastal ecosystem, both ecologically and economically. Mangrove provides rich-carbon stock, most carbon-rich forest among ecosystems of tropical forest. It is very important for the country to have a large mangrove area in the context of global community of climate change policy related to emission trading in the Kyoto Protocol. Estimation of mangrove carbon-stock using remote sensing data plays an important role in emission trading in the future. Estimation models of above ground mangrove biomass are still limited and based on common forest biomass estimation models that already have been developed. Vegetation indices are commonly used in the biomass estimation models, but they have low correlation results according to several studies. Synthetic Aperture Radar (SAR) data with capability in detecting volume scattering has potential applications for biomass estimation with better correlation. This paper describes a new model which was developed using a combination of optical and SAR data. Biomass is volume dimension related to canopy and height of the trees. Vegetation indices could provide two dimensional information on biomass by recording the vegetation canopy density and could be well estimated using optical remote sensing data. One more dimension to be 3 dimensional feature is height of three which could be provided from SAR data. Vegetation Indices used in this research was NDVI extracted from Landsat 8 data and height of tree estimated from ALOS PALSAR data. Calculation of field biomass data was done using non-decstructive allometric based on biomass estimation at 2 different locations that are Segara Anakan Cilacap and Alas Purwo Banyuwangi, Indonesia. Correlation between vegetation indices and field biomass with ALOS PALSAR-based biomass estimation was low. However, multiplication of NDVI and tree height with field biomass correlation resulted R2 0.815 at Alas Purwo and R2 0.081 at Segara Anakan.  Low correlation at Segara anakan was due to failed estimation of tree height. It seems that ALOS PALSAR height was not accurate for determination of areas dominated by relative short trees as we found at Segara Anakan Cilacap, but the result was quite good for areas dominated by high trees. To improve the accuracy of tree height estimation, this method still needs validation using more data.
COMPARISON ANALYSIS OF INTERPOLATION TECHNIQUES FOR DEM GENERATION USING CARTOSAT-1 STEREO DATA Andie Setiyoko; Anil Kumar
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 9, No 2 (2012)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1117.466 KB) | DOI: 10.30536/j.ijreses.2012.v9.a1829

Abstract

Digital Elevation Model (DEM) can be generated using several techniques such as photogrammetric technique, interferometry, Lidar, etc. In photogrammetric technique, a DEM generation using stereo images, accuracy of generated DEM is also dependent on interpolation techniques. The process of interpolation is conducted to generate DEM as a continuous data from the point map that contained height information as a discrete data. In this research, point map was extracted from Cartosat-1 stereo image and from geodetic single frequency GPS in differential mode. Different interpolation techniques were applied on these data sets with different combination within these data sets. In this study, analysis of DEM interpolation was conducted with deterministic interpolators such as inverse distance weighted (IDW), global polynomial, local polynomial, and radial basis functions (RBF); and probabilistic interpolators such as simple kriging, ordinary kriging, universal kriging, indicator kriging, probabilistic kriging, disjunctive kriging, and cokriging. The accuracy of generated DEMs through different interpolation techniques were evaluated with ground point data collected from geodetic single frequency GPS in differential mode. Based on the analysis, the range error of DEMs generated was between 1.29 m to 2.96 m. Interpolation method with the least error was ordinary kriging using point map data and GPS points, while the highest error was obtained from global polynomial method.
GEOSTATISTICAL TEST USING LEAST SQUARE ADJUSTMENT COMPUTATION TO OBTAIN THE REDUCTION PARAMETER FOR DSM TO DEM CONVERSION (Study of Case: Cilacap, Indonesia) Atriyon Julzarika
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 7, No 1 (2010): Vol 7,(2010)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1299.981 KB) | DOI: 10.30536/j.ijreses.2010.v7.a1538

Abstract

Abstract. ALOS satellite is one of the natural resources satellites that can be used for 3D model applications. The problems of 3D model generation based on satellite imagery are the model always in Digital Surface Model (DSM), not in Digital Elevation Model (DEM). The reference system of 3D model that are produced by ALOS satellite image is still as surface for z axis, whereas x axis and y axis has been closed to 2D reference system in some certain datum and system of map projection. Therefore, it needs a research to observe the accuracy and the precision of ALOS satellite data using a least square adjustment in parameter methods. The results of this research will be used as a reference for next research to find a way for changing DSM from ALOS satellite image to be DEM automatically.
THE EFFECT OF DIFFERENT ATMOSPHERIC CORRECTIONS ON BATHYMETRY EXTRACTION USING LANDSAT 8 SATELLITE IMAGERY Kuncoro Teguh Setiawan; Yennie Marini; Johannes Manalu; Syarif Budhiman
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 12, No 1 (2015)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1113.457 KB) | DOI: 10.30536/j.ijreses.2015.v12.a2668

Abstract

Remote sensing technology can be used to obtain information bathymetry. Bathymetric information plays an important role for fisheries, hydrographic and navigation safety. Bathymetric information derived from remote sensing data is highly dependent on the quality of satellite data use and processing. One of the processing to be done is the atmospheric correction process. The data used in this study is Landsat 8 image obtained on June 19, 2013. The purpose of this study was to determine the effect of different atmospheric correction on bathymetric information extraction from Landsat satellite image data 8. The atmospheric correction methods applied were the minimum radiant, Dark Pixels and ATCOR. Bathymetry extraction result of Landsat 8 uses a third method of atmospheric correction is difficult to distinguish which one is best. The calculation of the difference extraction results was determined from regression models and correlation coefficient value calculation error is generated.
Back Pages IJReSES Vol. 14, No. 1(2017) Editorial Journal
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 14, No 1 (2017)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (649.795 KB)

Abstract

Back Pages IJReSES Vol. 14, No. 1(2017)
THE ASSESSMENT OF PELAGIC FISH STOCK AND ITS DISTRIBUTIONS IN INDIAN OCEAN BY SPLIT BEAM ACOUSTIC SYSTEM I NYOMAN ARNAYA
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 2(2005)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (150.663 KB) | DOI: 10.30536/j.ijreses.2005.v2.a1361

Abstract

The assessment of pelagic fish stock and its distribution in Indian Ocean, especially southern part of Java-Bali-Lombok, was conducted by SIMRAD EK-500 Split-beam Acoustic System, in October-November 2001. The research was carried out by R/V Baruna Jaya VII of Indonesia Institute of Science (LIPI), under the Fish Stock Assessment Project in Indonesian Waters of fiscal year 2001. As a result, it can be reported that (I) the dominant species of pelagic fish distributed in this area is small pelagic fish with target strength (TS) values between -54.00 dB to - 37.60 dB, absolute density of between 0.07 to 218 fish/1000 m\ and total fish stock of 526.570 ton/year; (2) the large pelagic fish (some species of tuna) also distributed in the area with average TS of -27 dB, absolute density between 0.00 to 0.07 fish/100 m\ and total fish stock of 386,260 ton/year. This result still needs more accurate verification, especially on the species composition and individual size of fish by a more appropriate biological sampling method (mid-water trawl). Consequently, more acoustical surveys combined with oceanographic sampling and exploratory fishing are needed to evaluate the existing condition of marine fish resources in the area, in order to optimize and set up the relevant and accurate fisheries management plan for suitable and responsible utilization offish resources. Keywords: Split-beam Acoustic System, Fish Stock Assessment, Target Strength, Density, Distribution, Indian Ocean (southern part of Java-Bali-Lombok).