International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles
117 Documents
Search results for
, issue
"Vol 10, No 2: April 2020"
:
117 Documents
clear
Improving the role of language model in statistical machine translation (Indonesian-Javanese)
Herry Sujaini
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 2: April 2020
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (727.559 KB)
|
DOI: 10.11591/ijece.v10i2.pp2102-2109
The statistical machine translation (SMT) is widely used by researchers and practitioners in recent years. SMT works with quality that is determined by several important factors, two of which are language and translation model. Research on improving the translation model has been done quite a lot, but the problem of optimizing the language model for use on machine translators has not received much attention. On translator machines, language models usually use trigram models as standard. In this paper, we conducted experiments with four strategies to analyze the role of the language model used in the Indonesian-Javanese translation machine and show improvement compared to the baseline system with the standard language model. The results of this research indicate that the use of 3-gram language models is highly recommended in SMT.
Optimal tuning linear quadratic regulator for gas turbine by genetic algorithm using integral time absolute error
Jamal M. Ahmed
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 2: April 2020
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (869.524 KB)
|
DOI: 10.11591/ijece.v10i2.pp1367-1375
For multiple input-multiple output (MIMO) systems, the most common control strategy is the linear quadratic regulator (LQR) which relies on state vector feedback. Despite this strategy gives very good result, it still has trial and error procedure to select the values of its weight matrices which plays a important role in reaching to the desiered system performance. In order to overcome this problem, the Genetic algorithm is used. The design of genetic algorithm based linear quadratic regulator (GA-LQR) utilized Integral time absolute error (ITAE) as a cost function for optimization. The propsed procedure is implemented on a linear model of gas turbine to control the generator spool’s speed and the output power.
A novel efficient multiple encryption algorithm for real time images
Shima Ramesh Maniyath;
Thanikaiselvan V.
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 2: April 2020
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (41.346 KB)
|
DOI: 10.11591/ijece.v10i2.pp1327-1336
In this study, we propose an innovative image encryption Techniques based on four different image encryption Algorithm. Our methodology integrates scrambling followed by Symmetric and Asymmetric Encryption Techniques, to make the image meaningless or disordered to enhance the ability to confront attack and in turn improve the security. This paper mainly focused on the multiple encryption Techniques with multiple keys on a single image by dividing it into four blocks. So instead of using one Encryption method a combination of four different Encryption Algorithm can make our image more secure. The Encryption is done first by using DNA as secret key, second by using RSA, third by DES and fourth by Chebyshev. The pros and cons for all the Encryption methods are discussed here. Proposed methodology can strongly encrypt the images for the purpose of storing images and transmitting them over the Internet. There are two major benefits related with this system. The first benefit is the use of Different Algorithm with different keys. The second benefit is that even though we are using four different Algorithm for a single image, the time taken for encryption and decryption is few seconds only. Our method is methodically checked, and it shows an exceptionally high level of security with very good image quality.
Energy efficient clustering using the AMHC (adoptive multi-hop clustering) technique
Vimala M.;
Rajeev Ranjan
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 2: April 2020
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (533.283 KB)
|
DOI: 10.11591/ijece.v10i2.pp1622-1631
IoT has gained fine attention in several field such as in industry applications, agriculture, monitoring, surveillance, similarly parallel growth has been observed in field of WSN. WSN is one of the primary component of IoT when it comes to sensing the data in various environment. Clustering is one of the basic approach in order to obtain the measurable performance in WSNs, Several algorithms of clustering aims to obtain the efficient data collection, data gathering and the routing. In this paper, a novel AMHC (Adaptive Multi-Hop Clustering) algorithm is proposed for the homogenous model, the main aim of algorithm is to obtain the higher efficiency and make it energy efficient. Our algorithm mainly contains the three stages: namely assembling, coupling and discarding. First stage involves the assembling of independent sets (maximum), second stage involves the coupling of independent sets and at last stage the superfluous nodes are discarded. Discarding superfluous nodes helps in achieving higher efficiency. Since our algorithm is a coloring algorithm, different color are used at the different stages for coloring the nodes. Afterwards our algorithm (AMHC) is compared with the existing system which is a combination of Second order data CC(Coupled Clustering) and Compressive-Projection PCA(Principal Component Analysis), and results shows that our algorithm excels in terms of several parameters such as energy efficiency, network lifetime, number of rounds performed.
Performance evaluation of the IEEE 802.11n random topology WLAN with QoS application
Ziyad Khalaf Farej;
Mustafa Mohammad Jasim
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 2: April 2020
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (3239.071 KB)
|
DOI: 10.11591/ijece.v10i2.pp1924-1934
The IEEE 802.11n supports high data rate transmissions due its physical layer Multiple Input Multiple Output (MIMO) advanced antenna system and MAC layer enhancement features (frame aggregation and block acknowledgement). As a result this standard is very suitable for multimedia services through its Enhanced Distributed Channel Access (EDCA). This paper focuses on evaluating the Quality of Service (QoS) application on the performance of the IEEE 802.11n random topology WLAN. Three different number of nodes (3, 9 and 18) random topology with one access point are modeled and simulated by using the Riverbed OPNET 17.5 Modular to investigate the Wireless Local Area Network (WLAN) performance for different spatial streams. The result clarified the impact of QoS application and showed that its effect is best at the 18 node number topology. For a 4x4 MIMO, when QoS is applied and with respect to the no QoS application case, simulation results show a maximum improvement of 86.4%, 33.9%, 52.2% and 68.9% for throughput, delay, data drop and retransmission attempts, respectively.
Integrated approach for efficient power consumption and resource allocation in MIMO-OFDMA
Archana B.;
T. P. Surekha
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 2: April 2020
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (947.322 KB)
|
DOI: 10.11591/ijece.v10i2.pp2069-2076
The growing interest towards wireless communication advancement with smart devices has provided the desired throughput of wireless communication mechanisms. But, attaining high-speed data packets amenities is the biggest issue in different multimedia applications. Recently, OFDM has come up with the useful features for wireless communication however it faces interference issues at carrier level (intercarrier interferences). To resolve these interference issues in OFDM, various existing mechanisms were utilized cyclic prefix, but it leads to redundancy in transmitted data. Also, the transmission of this redundant data can take some more power and bandwidth. All these limitations factors can be removed from a parallel cancellation mechanism. The integration of parallel cancellation and Convolution Viterbi encoding and decoding in MIMO-OFDMA will be an effective solution to have high data rate which also associations with the benefits of both the architectures of MIMO and OFDMA modulation approaches. This paper deals with this integrated mechanism for efficient resource allocation and power consumption. For performance analysis, MIMO-OFDMA system is analyzed with three different approaches likeMIMO-OFDM system without parallel cancellation (MIMO-OFDMA-WPC), MIMO-OFDMA System with parallel cancellation (MIMO-OFDMA-PC) and proposed IMO-OFDMA system with parallel cancellation and Convolution Viterbi encoding/decoding (pMIMO-OFDMA-PC &CVed) for 4x4 transmitter and receiver. Through performance analysis, it is found that the proposed system achieved better resource allocation (bandwidth) with high data rate by minimized BER rate and achieved least power consumption with least BER.
Quantification of operating reserves with high penetration of wind power considering extreme values
Johan S. Obando;
Gabriel González;
Ricardo Moreno
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 2: April 2020
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (604.535 KB)
|
DOI: 10.11591/ijece.v10i2.pp1693-1700
The high integration of wind energy in power systems requires operating reserves to ensure the reliability and security in the operation. The intermittency and volatility in wind power sets a challenge for day-ahead dispatching in order to schedule generation resources. Therefore, the quantification of operating reserves is addressed in this paper using extreme values through Monte-Carlo simulations. The uncertainty in wind power forecasting is captured by a generalized extreme value distribution to generate scenarios. The day-ahead dispatching model is formulated as a mixed-integer linear quadratic problem including ramping constraints. This approach is tested in the IEEE-118 bus test system including integration of wind power in the system. The results represent the range of values for operating reserves in day-ahead dispatching.
Control of variable reluctance machine (8/6) by artificiel intelligence techniques
Mama Chouitek;
Noureddine Benouzza;
Benaissa Bekouche
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 2: April 2020
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1035.503 KB)
|
DOI: 10.11591/ijece.v10i2.pp1893-1904
The non-linearity of variable-Reluctance Machine (8/6) and the dependence of machine inductance on rotor position and applied current complicate the development of the control strategies of drives using variable-Reluctance Machine variable-Reluctance Machine (VRM). The classical-control algorithms for example of derived full proportional action may prove sufficient if the requirements on the accuracy and performance of systems are not too strict. In the opposite case and particularly when the controlled part is submitted to strong nonlinearity and to temporal variations, control techniques must be designed which ensure the robustness of the process with respect to the uncertainties on the parameters and their variations. These techniques include artificial-intelligence-based techniques constituted of neural networks and fuzzy logic. This technique has the ability to replace PID regulators by nonlinear ones using the human brain’s reasoning and functioning and is simulated by using MATLAB/Simulink software. Finally, by using obtained waveforms, these results will be compared.
An improved closed loop hybrid phase shift controller for dual active bridge converter
S. Narasimha;
Surender Reddy Salkuti
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 2: April 2020
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (946.974 KB)
|
DOI: 10.11591/ijece.v10i2.pp1169-1178
In this paper, a new closed loop hybrid phase shift control is proposed for dual active bridge (DAB) converter with variable input voltage. The extended phase shift (EPS) control is applied when load gets heavy enough and the secondary side phase shift angle decreases to zero. When this modified DAB converter operates at light loads, the triple phase shift (TPS) modulation method is applied, and the added control freedom is the secondary phase shift angle between the two-secondary side switching legs. The hybrid phase shift control (HPS) scheme is a combination of EPS and TPS modulations, and it provides a very simple closed form implementation for the primary and secondary side phase shift angles. Depending on the application by changing the phase shift angles we can achieve Buck or Boost operation. A characteristic table feedback control method has been used for closed loop operation. By using 1D look up table the proposed DAB converter provides constant 400V for any given input voltage.
Trust-based secure routing against lethal behavior of nodes in wireless adhoc network
Jyoti Neeli;
N. K. Cauvery
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 2: April 2020
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (225.891 KB)
|
DOI: 10.11591/ijece.v10i2.pp1592-1598
Offering a secure communication in wireless adhoc network is yet an open-end problem irrespective of archives of existing literatures towards security enhancement. Inclination towards solving specific forms of attack in adhoc network is majorly seen as an existing trend which lowers the applicability of existing security solution while application environment or attack scenario is changed. Therefore, the proposed system implements an analytical secure routing modeling which performs consistent monitoring of the malicious behaviour of its neighboring node and formulates decision towards secure routing by the source nodes. Harnessing the potential ofconceptual probabilistic modeling, the proposed system is capable as well as applicable for resisting maximum number / types of threats in wireless network. The study outcome show proposed scheme offer better performance in contrast to existing secure routing scheme.