cover
Contact Name
Tole Sutikno
Contact Email
ijece@iaesjournal.com
Phone
-
Journal Mail Official
ijece@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Electrical and Computer Engineering
ISSN : 20888708     EISSN : 27222578     DOI : -
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles 113 Documents
Search results for , issue "Vol 12, No 6: December 2022" : 113 Documents clear
Communication, culture, competency, and stakeholder that contribute to requirement elicitation effectiveness Ajchareeya Chaipunyathat; Nalinpat Bhumpenpein
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6472-6485

Abstract

In the context of software development, requirement engineering is one of the crucial phases that leads to software project success or failure. According to several disruptive changes in the software engineering landscape as well as the world’s challenge of virus pandemic, the provision of practical and innovative software applications is required. Therefore, issues resolution in requirement elicitation is potentially one of the key success factors resulting in enhanced quality of system requirement. The authors have striven to create new ways of requirement elicitation according to factor effects of communication, culture, competency, and stakeholder, by incorporating tools, processes, methods, and techniques to solve the problems comprehensively, and then proposed an adaptive and applicable conceptual framework. To illustrate these effects, the authors performed a literature review from the past 8 years, and then data analysis from interviews of 27 practitioners, observations and focus groups of software development in real-life projects.
Intelligent grading of kaffir lime oil quality using non-linear support vector machine Nor Syahira Jak Jailani; Zuraida Muhammad; Mohd Hezri Fazalul Rahiman; Mohd Nasir Taib
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6716-6723

Abstract

This paper presents kaffir lime oil quality grading using the intelligent system classification method, a non-linear support vector machine (NSVM). This method classifies the quality kaffir lime oil into two groups: high and low quality, based on their significant chemical compounds. The 90 data of kaffir lime oil were used in this project from high to low quality. The abundance (%) of significant chemical compounds will act as the input and high or low quality as an output. The 90 data will be divided into two sets: training and testing data sets with a ratio of 8:2. The radial basis function (RBF) optimization kernel parameters in NSVM. Using the implementation of MATLAB software version R2020a, all data and analysis work was performed automatically. The results showed that the NSVM model met all performance criteria for 100% accuracy, sensitivity, specificity, and precision.
Robusta coffee leaf diseases detection based on MobileNetV2 model Yazid Aufar; Tesdiq Prigel Kaloka
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6675-6683

Abstract

Indonesia is a major exporter and producer of coffee, and coffee cultivation adds to the nation's economy. Despite this, coffee remains vulnerable to several plant diseases that may result in significant financial losses for the agricultural industry. Traditionally, plant diseases are detected by expert observation with the naked eye. Traditional methods for managing such diseases are arduous, time-consuming, and costly, especially when dealing with expansive territories. Using a model based on transfer learning and deep learning model, we present in this study a technique for classifying Robusta coffee leaf disease photos into healthy and unhealthy classes. The MobileNetV2 network serves as the model since its network design is simple. Therefore, it is likely that the suggested approach will be deployed further on mobile devices. In addition, the transfer learning and experimental learning paradigms. Because it is such a lightweight net, the MobileNetV2 system serves as the foundational model. Results on Robusta coffee leaf disease datasets indicate that the suggested technique can achieve a high level of accuracy, up to 99.93%. The accuracy of other architectures besides MobileNetV2 such as DenseNet169 is 99.74%, ResNet50 architecture is 99.41%, and InceptionResNetV2 architecture is 99.09%.
Modeling and analysis of field-oriented control based permanent magnet synchronous motor drive system using fuzzy logic controller with speed response improvement Parvathy Thampi Mooloor Sahridayan; Raghavendra Gopal
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6010-6021

Abstract

The permanent magnet synchronous motor (PMSM) acts as an electrical motor mainly used in many diverse applications. The controlling of the PMSM drive is necessary due to frequent usage in various systems. The conventional proportional-integral-derivative (PID) controller’s drawbacks are overcome with fuzzy logic controller (FLC) and adopted in the PMSM drive system. In this manuscript, an efficient field-oriented control (FOC) based PMSM drive system using a fuzzy logic controller (FLC) is modeled to improve the speed and torque response of the PMSM. The PMSM drive system is modeled using abc to αβ and αβ to abc transformation, 2-level space vector pulse width modulation (SVPWM), AC to DC rectifier with an inverter, followed by PMSM drive, proportional integral (PI) controller along with FLC. The FLC’s improved fuzzy rule set is adopted to provide faster speed response, less % overshoot time, and minimal steady-state error of the PMSM drive system. The simulation results of speed response, torque response, speed error, and phase currents are analyzed. The FLC-based PMSM drive is compared with the conventional PID-based PMSM drive system with better improvements in performance metrics.
A web content mining application for detecting relevant pages using Jaccard similarity Ahmed Adeeb Jalal; Abdulrahman Ahmed Jasim; Amar A. Mahawish
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6461-6471

Abstract

The tremendous growth in the availability of enormous text data from a variety of sources creates a slew of concerns and obstacles to discovering meaningful information. This advancement of technology in the digital realm has resulted in the dispersion of texts over millions of web sites. Unstructured texts are densely packed with textual information. The discovery of valuable and intriguing relationships in unstructured texts demands more computer processing. So, text mining has developed into an attractive area of study for obtaining organized and useful data. One of the purposes of this research is to discuss text pre-processing of automobile marketing domains in order to create a structured database. Regular expressions were used to extract data from unstructured vehicle advertisements, resulting in a well-organized database. We manually develop unique rule-based ways of extracting structured data from unstructured web pages. As a result of the information retrieved from these advertisements, a systematic search for certain noteworthy qualities is performed. There are numerous approaches for query recommendation, and it is vital to understand which one should be employed. Additionally, this research attempts to determine the optimal value similarity for query suggestions based on user-supplied parameters by comparing MySQL pattern matching and Jaccard similarity.
Computed tomography image analysis for Indonesian total hip arthroplasty designs Talitha Asmaria; Dita Ayu Mayasari; Alfensa Dinda Gestara Febrananda; Nadiya Nurul; Ahmad Jabir Rahyussalim; Ika Kartika
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6123-6131

Abstract

Total hip arthroplasty purposes to replace a hip joint damaged by an artificial hip joint. However, the developed products that already exist in the market lead to the mismatch between the hip implant equipment and the patient’s bone morphometric. Besides causing complications, the mismatch also continues to the dislocation effects, fracture, osteolysis, and thigh pain. This paper aims to design a customized hip implant based on real patient data, particularly for Indonesian patient, limited to the acetabular components and stem parts. The computed images were analyzed to estimate the patient proximal femur morphometric; those are the femoral head diameter, neck-shaft angle, mediolateral width, anteroposterior width, neck length and neck width. The experiment has succeeded in designing the acetabular shell with the thickness of 3 mm, the acetabular liner with the thickness of 6 mm, the femoral head between 22.4 to 24.8 mm, the short stem in both the right for 110.656 mm and left femur bone for 111.49 mm; that fit the patient's femur bone. Overall, the proposed steps in designing the customized hip implant in this work, based on image analysis on medical imaging data, can be a standard to be applied for other patient-needs hip arthroplasty implants.
Machine learning and deep learning performance in classifying dyslexic children’s electroencephalogram during writing Ahmad Zuber Ahmad Zainuddin; Wahidah Mansor; Khuan Yoot Lee; Zulkifli Mahmoodin
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6614-6624

Abstract

Dyslexia is a form of learning disability that causes a child to have difficulties in writing alphabets, reading words, and doing mathematics. Early identification of dyslexia is important to provide early intervention to improve learning disabilities. This study was carried out to differentiate EEG signals of poor dyslexic, capable dyslexic, and normal children during writing using machine learning and deep learning. three machine learning algorithms were studied: k-nearest neighbors (KNN), support vector machine (SVM), and extreme learning machine (ELM) with input features from coefficients of beta and theta band power extracted using discrete wavelet transform (DWT). As for the deep learning (DL) algorithm, long short-term memory (LSTM) architecture was employed. The kernel parameters of the classifiers were optimized to achieve high classification accuracy. Results showed that db8 achieved the greatest classification accuracy for all classifiers. Support vector machine with radial basis function kernel yields the highest accuracy which is 88% than other classifiers. The support vector machine with radial basis function kernel with db8 could be employed in determining the dyslexic children’s levels objectively during writing.
Comparison of window shapes and lengths in short-time feature extraction for classification of heart sound signals Mahmoud Fakhry; Abeer FathAllah Brery
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6090-6102

Abstract

Heart sound signals, phonocardiography (PCG) signals, allow for the automatic diagnosis of potential cardiovascular pathology. Such classification task can be tackled using the bidirectional long short-term memory (biLSTM) network, trained on features extracted from labeled PCG signals. Regarding the non-stationarity of PCG signals, it is recommended to extract the features from multiple short-length segments of the signals using a sliding window of certain shape and length. However, some window contains unfavorable spectral side lobes, which distort the features. Accordingly, it is preferable to adapt the window shape and length in terms of classification performance. We propose an experimental evaluation for three window shapes, each with three window lengths. The biLSTM network is trained and tested on statistical features extracted, and the performance is reported in terms of the window shapes and lengths. Results show that the best performance is obtained when the Gaussian window is used for splitting the signals, and the triangular window competes with the Gaussian window for a length of 75 ms. Although the rectangular window is a commonly offered option, it is the worst choice for splitting the signals. Moreover, the classification performance obtained with a 75 ms Gaussian window outperforms that of a baseline method.
Maximum power point tracking based on improved spotted hyena optimizer for solar photovoltaic Muhammad Farizky Alvianandy; Novie Ayub Windarko; Bambang Sumantri
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp5775-5788

Abstract

The conventional maximum power point tracking (MPPT) method such as perturb and observe (P&O) under partial shading conditions with non-uniform irradiation, can get trapped on local maximum power point (LMPP) and cannot reach global maximum power point (GMPP). This study proposes a bio-inspired metaheuristic algorithm spotted hyena optimizer (SHO) and improved SHO as a new MPPT technique. The proposed SHO-MPPT and improved SHO-MPPT are used to extract GMPP from solar photovoltaic (PV) arrays operated under uniform irradiation and non-uniform irradiation. Simulation with Powersim (PSIM) and experimental with the emulated PV source were presented. Furthermore, to evaluate the performance of the proposed algorithm, SHO-MPPT is compared with P&O-MPPT and particle swarm optimization (PSO)-MPPT. The SHO-MPPT has an accuracy of 99% and has the good capability, but there are power fluctuations before reaching MPP. Therefore, improved SHO-MPPT was developed to get better results. The improved SHO-MPPT proved high accuracy of 99% and faster than SHO-MPPT and PSO-MPPT in tracking the maximum power point (MPP). Furthermore, there are minor power fluctuations.
Forecasting stock price movement direction by machine learning algorithm Bui Thanh Khoa; Tran Trong Huynh
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6625-6634

Abstract

Forecasting stock price movement direction (SPMD) is an essential issue for short-term investors and a hot topic for researchers. It is a real challenge concerning the efficient market hypothesis that historical data would not be helpful in forecasting because it is already reflected in prices. Some commonly-used classical methods are based on statistics and econometric models. However, forecasting becomes more complicated when the variables in the model are all nonstationary, and the relationships between the variables are sometimes very weak or simultaneous. The continuous development of powerful algorithms features in machine learning and artificial intelligence has opened a promising new direction. This study compares the predictive ability of three forecasting models, including support vector machine (SVM), artificial neural networks (ANN), and logistic regression. The data used is those of the stocks in the VN30 basket with a holding period of one day. With the rolling window method, this study got a highly predictive SVM with an average accuracy of 92.48%.

Page 1 of 12 | Total Record : 113


Filter by Year

2022 2022


Filter By Issues
All Issue Vol 15, No 6: December 2025 Vol 15, No 5: October 2025 Vol 15, No 4: August 2025 Vol 15, No 3: June 2025 Vol 15, No 2: April 2025 Vol 15, No 1: February 2025 Vol 14, No 6: December 2024 Vol 14, No 5: October 2024 Vol 14, No 4: August 2024 Vol 14, No 3: June 2024 Vol 14, No 2: April 2024 Vol 14, No 1: February 2024 Vol 13, No 6: December 2023 Vol 13, No 5: October 2023 Vol 13, No 4: August 2023 Vol 13, No 3: June 2023 Vol 13, No 2: April 2023 Vol 13, No 1: February 2023 Vol 12, No 6: December 2022 Vol 12, No 5: October 2022 Vol 12, No 4: August 2022 Vol 12, No 3: June 2022 Vol 12, No 2: April 2022 Vol 12, No 1: February 2022 Vol 11, No 6: December 2021 Vol 11, No 5: October 2021 Vol 11, No 4: August 2021 Vol 11, No 3: June 2021 Vol 11, No 2: April 2021 Vol 11, No 1: February 2021 Vol 10, No 6: December 2020 Vol 10, No 5: October 2020 Vol 10, No 4: August 2020 Vol 10, No 3: June 2020 Vol 10, No 2: April 2020 Vol 10, No 1: February 2020 Vol 9, No 6: December 2019 Vol 9, No 5: October 2019 Vol 9, No 4: August 2019 Vol 9, No 3: June 2019 Vol 9, No 2: April 2019 Vol 9, No 1: February 2019 Vol 8, No 6: December 2018 Vol 8, No 5: October 2018 Vol 8, No 4: August 2018 Vol 8, No 3: June 2018 Vol 8, No 2: April 2018 Vol 8, No 1: February 2018 Vol 7, No 6: December 2017 Vol 7, No 5: October 2017 Vol 7, No 4: August 2017 Vol 7, No 3: June 2017 Vol 7, No 2: April 2017 Vol 7, No 1: February 2017 Vol 6, No 6: December 2016 Vol 6, No 5: October 2016 Vol 6, No 4: August 2016 Vol 6, No 3: June 2016 Vol 6, No 2: April 2016 Vol 6, No 1: February 2016 Vol 5, No 6: December 2015 Vol 5, No 5: October 2015 Vol 5, No 4: August 2015 Vol 5, No 3: June 2015 Vol 5, No 2: April 2015 Vol 5, No 1: February 2015 Vol 4, No 6: December 2014 Vol 4, No 5: October 2014 Vol 4, No 4: August 2014 Vol 4, No 3: June 2014 Vol 4, No 2: April 2014 Vol 4, No 1: February 2014 Vol 3, No 6: December 2013 Vol 3, No 5: October 2013 Vol 3, No 4: August 2013 Vol 3, No 3: June 2013 Vol 3, No 2: April 2013 Vol 3, No 1: February 2013 Vol 2, No 6: December 2012 Vol 2, No 5: October 2012 Vol 2, No 4: August 2012 Vol 2, No 3: June 2012 Vol 2, No 2: April 2012 Vol 2, No 1: February 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue