International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles
63 Documents
Search results for
, issue
"Vol 7, No 2: April 2017"
:
63 Documents
clear
Recent Trend in Electromagnetic Radiation and Compliance Assessments for 5G Communication
Nor Adibah Ibrahim;
Tharek Abd. Rahman;
Olakunle Elijah
International Journal of Electrical and Computer Engineering (IJECE) Vol 7, No 2: April 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (524.522 KB)
|
DOI: 10.11591/ijece.v7i2.pp912-918
The deployment of the 5G networks will feature high proliferation of radio base station (RBS) in order to meet the increasing demand for bandwidth and also to provide wider coverage that will support more mobile users and the internet-of-things (IoT). The radio frequency (RF) waves from the large-scale deployment of the RBS and mobile devices will raise concerns on the level of electromagnetic (EM) radiation exposure to the public. Hence, in this paper, we provide an overview of the exposure limits, discuss some of the effects of the EM emission, reduction techniques and compliance assessment for the 5G communication systems. We discuss the open issues and give future directions.
A Modified Diagonal Mesh Shuffle Exchange Interconnection Network
Akash Punhani;
Pardeep Kumar;
Nitin Nitin
International Journal of Electrical and Computer Engineering (IJECE) Vol 7, No 2: April 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1035.505 KB)
|
DOI: 10.11591/ijece.v7i2.pp1042-1050
Interconnection network is an important part of the digital system. The interconnection mainly describes the topology of the network along with the routing algorithm and flow control mechanism. The topology of the network plays an important role on the performance of the system. Mesh interconnection network was the simplest topology, but has the limited bisection bandwidth on the other hand torus and diagonal mesh was having long links. The Modified diagonal mesh network tried to replace the torodial links but was having more average path length so in proposed topology we have tried to improve the average distance using shuffle exchange network over the boundary node. In this paper, we propose the architecture of Modified Diagonal Mesh Shuffle Exchange Interconnection Network. This Modified Diagonal Mesh Shuffle Exchange Interconnection network have been compared with four popular topologies that are simple 2D Mesh, 2D Torus, Diagonal Mesh and Modified Diagonal Mesh Interconnection Network on the four traffic patterns such as Bit Complement traffic, Neighbor traffic, Tornado traffic and Uniform traffic are used for comparisonand performance analysis. We have performed the analysis with a 5% and 10% of hotspot on the Uniform Traffic. The simulation results shows that the proposed topology is performed better on bit complement traffic and can also handle the other traffic up to certain level.
Focusing Properties of a Modified Retarding Structure for Linear Electron Accelerators
Vladimir Kuz'mich Shilov;
Aleksandr Nikolaevich Filatov;
Aleksandr Evgen'evich Novozhilov
International Journal of Electrical and Computer Engineering (IJECE) Vol 7, No 2: April 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (537.931 KB)
|
DOI: 10.11591/ijece.v7i2.pp741-747
When using accelerators in industry and medicine, important are the dimensions of the device used, especially the radial ones. In the linear electron accelerators based on a biperiodic retarding structure, which operates in the standing wave mode, there is a possibility to provide focusing of the accelerated particles with the help of high-frequency fields without the use of external focusing elements. In the accelerating cell, due to the presence of the far protruding drift sleeves, the electric field lines become strongly curved, which leads to the appearance in the regions adjacent to these sleeves of a substantial in magnitude radial component of the electric field. The particles entering the accelerating gap experience the action of a force directed toward the axis of the system, and at the exit, of a force directed away from the axis. Under certain conditions, alternation of the focusing and defocusing fields can lead to a general focusing effect. In the paper we study the focusing properties of a modified biperiodic structure with standing wave. The main attention is paid to the possibility of using the focusing properties of the electromagnetic accelerating field for guiding the electron beam through the aperture of the accelerating system, which will lead to a significant reduction in the accelerator sizes. The proposed method can be applied in the calculation and design of linear electron accelerators.
The Application of Homer Optimization Software to Investigate the Prospects of Hybrid Renewable Energy System in Rural Communities of Sokoto in Nigeria
Abdullahi Abubakar Masud
International Journal of Electrical and Computer Engineering (IJECE) Vol 7, No 2: April 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (797.269 KB)
|
DOI: 10.11591/ijece.v7i2.pp596-603
This paper investigates the prospects and cost-effectiveness of implementation of standalone PV/wind system in sokoto state Nigeria. Daily electricity demand, yearly solar radiation and wind speed were applied to determine the optimum sizing of the renewable energy (RE) system. To design optimum RE with proper sizing of system components, meteorological data obtained from the National Aeronautics and Space Administration were applied as input for this study. In Nigeria, sokoto is a region with solar radiation of 6kWh/m2/day and wind speed of 5m/s at 10m above height. Using the Homer optimization software, the optimum integrated RE system is 35.21kW PV, 3 x 25kW wind turbines, 12 x 24V lead acid battery and 17.44kW converter. The system has a total capital cost of $249910.24, the replacement cost of $82914.85 and maintenance cost of $53802.80 for 25 years. Though the initial capital cost is high but the long term benefits are enormous, considering the high cost of implementing rural electrification scheme, coupled with ahike in electricity tariff. There is also a payback period of 5 years. The results imply a standalone PV/wind system is feasible in rural communities of sokoto with 100% pollution free energy system.
Utility Function-based Pricing Strategies in Maximizing the Information Service Provider’s Revenue with Marginal and Monitoring Costs
Robinson Sitepu;
Fitri Maya Puspita;
Anggi Nurul Pratiwi;
Icha Puspita Novyasti
International Journal of Electrical and Computer Engineering (IJECE) Vol 7, No 2: April 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (646.013 KB)
|
DOI: 10.11591/ijece.v7i2.pp877-887
Previous research only focus on maximizing revenue for pricing strategies for information good with regardless the marginal and monitoring costs. This paper aims to focus on the addition of marginal and monitoring costs into the pricing strategies to maintain the maximal revenue while introduce the costs incurred in adopting the strategies. The well-known utility functions applied to also consider the consumer’s satisfaction towards the service offered. The results show that the addition costs incurred for setting up the strategies can also increase the profit for the providers rather than neglecting the costs. It is also showed that the Cobb-Douglas utility functions used can enhance the notion of provider to optimize the revenue compared to quasi linear and perfect substitutes.
SC-FDM-IDMA Scheme Employing BCH Coding
Roopali Agarwal;
Manoj K. Shukla
International Journal of Electrical and Computer Engineering (IJECE) Vol 7, No 2: April 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (618.379 KB)
|
DOI: 10.11591/ijece.v7i2.pp992-998
In OFDM-IDMA scheme, intersymbol interference (ISI) is resolved by the OFDM layer and multiple access interference (MAI) is suppressed by the IDMA layer at low cost . However OFDM-IDMA scheme suffers high peak-to-average power ratio (PAPR) problem. For removing high PAPR problem a hybrid multiple access scheme SC-FDM-IDMA has been proposed. In this paper, bit error rate (BER) performance comparison of SC-FDM-IDMA scheme, OFDM-IDMA scheme and IDMA scheme have been duly presented. Moreover, the BER performance of various subcarrier mapping methods for SC-FDM-IDMA scheme as well as other results with variation of different parameters have also been demonstrated. Finally simulation result for BER performance improvement has been shown employing BCH code. All the simulation results demonstrate the suitability of SC-FDM-IDMA scheme for wireless communication under AWGN channel environment.
Implementation of Algorithm for Vehicle Anti-Collision Alert System in FPGA
Aiman Zakwan Jidin;
Lim Siau Li;
Ahmad Fauzan Kadmin
International Journal of Electrical and Computer Engineering (IJECE) Vol 7, No 2: April 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (434.116 KB)
|
DOI: 10.11591/ijece.v7i2.pp775-783
Vehicle safety has becoming one of the important issues nowadays, due to the fact the number of road accidents, which cause injuries, deaths and also damages, keeps on increasing. One of the main factors which contribute to these accidents are human's lack of awareness and also carelessness. This paper presents the development and implementation of an algorithm to be utilized for vehicle anti-collision alert system, which may be useful to reduce the occurrence of accidents. This algorithm, which is to be deployed with the front sensors of the vehicle, is capable of alerting any occurrence of sudden slowing or static vehicles ahead, by sensing the rate of distance change. Furthermore, it also triggers an alert if the driver is breaching the safe distance from the vehicle ahead. This algorithm has been successfully implemented in Altera DE0 FPGA and its functionality was validated via hardware experimental tests.
The Correlation between Surface Tracking and Partial Discharge Characteristics on Pressboard Surface Immersed in MIDEL eN
Nur Amirah Othman;
Hidayat Zainuddin;
Aminuddin Aman;
Sharin Abd Ghani;
Imran Sutan Chairul
International Journal of Electrical and Computer Engineering (IJECE) Vol 7, No 2: April 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (754.448 KB)
|
DOI: 10.11591/ijece.v7i2.pp631-640
This paper presents the investigation of the surface tracking on pressboard surface immersed in MIDEL eN oil. In this work, the development of surface discharge was analyzed by correlating the visual records of surface tracking on impregnated pressboard and the partial discharge (PD) activities. The PD activities during the surface tracking process were analyzed in terms of Phase Resolved Partial Discharge (PRPD) patterns. Throughout the experiment, surface discharge is found as the development of tree-like patterns in the form of white marks occurring on the oil-pressboard interface. This phenomenon is generally accepted as the drying out process that involves evaporation and decomposition of the oil molecules in the pressboard pores due to the surface discharge activities on the pressboard surface layer. The development of surface discharge on the pressboard surface can continue from minutes to months or even years until failure. Thus, condition monitoring system is important to characterize this type of faulty condition. The experimental results show that there is the decreasing trend of PD magnitude during the development of white mark hallway of a gap distance which is eventually suffered from an unexpected fault.
Video Inter-frame Forgery Detection Approach for Surveillance and Mobile Recorded Videos
Staffy Kingra;
Naveen Aggarwal;
Raahat Devender Singh
International Journal of Electrical and Computer Engineering (IJECE) Vol 7, No 2: April 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (769.793 KB)
|
DOI: 10.11591/ijece.v7i2.pp831-841
We are living in an age where use of multimedia technologies like digital recorders and mobile phones is increasing rapidly. On the other hand, digital content manipulating softwares are also increasing making it easy for an individual to doctor the recorded content with trivial consumption of time and wealth. Digital multimedia forensics is gaining utmost importance to restrict unethical use of such easily available tampering techniques. These days, it is common for people to record videos using their smart phones. We have also witnessed a sudden growth in the use of surveillance cameras, which we see inhabiting almost every public location. Videos recorded using these devices usually contains crucial evidence of some event occurence and thereby most susceptible to inter-frame forgery which can be easily performed by insertion/removal/replication of frame(s). The proposed forensic technique enabled detection of inter-frame forgery in H.264 and MPEG-2 encoded videos especially mobile recorded and surveillance videos. This novel method introduced objectivity for automatic detection and localization of tampering by utilizing prediction residual gradient and optical flow gradient. Experimental results showed that this technique can detect tampering with 90% true positive rate, regardless of the video codec and recording device utilized and number of frames tampered.
Diagnosis of Faulty Sensors in Antenna Array using Hybrid Differential Evolution based Compressed Sensing Technique
Shafqat Ullah Khan;
M. K. A. Rahim;
I. M. Qureshi;
N. A. Murad
International Journal of Electrical and Computer Engineering (IJECE) Vol 7, No 2: April 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (279.752 KB)
|
DOI: 10.11591/ijece.v7i2.pp961-966
In this work, differential evolution based compressive sensing technique for detection of faulty sensors in linear arrays has been presented. This algorithm starts from taking the linear measurements of the power pattern generated by the array under test. The difference between the collected compressive measurements and measured healthy array field pattern is minimized using a hybrid differential evolution (DE). In the proposed method, the slow convergence of DE based compressed sensing technique is accelerated with the help of parallel coordinate decent algorithm (PCD). The combination of DE with PCD makes the minimization faster and precise. Simulation results validate the performance to detect faulty sensors from a small number of measurements.