cover
Contact Name
Tole Sutikno
Contact Email
ijece@iaesjournal.com
Phone
-
Journal Mail Official
ijece@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Electrical and Computer Engineering
ISSN : 20888708     EISSN : 27222578     DOI : -
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles 6,301 Documents
Optimal location and reactive power injection of wind farms and SVC’s units using voltage indices and PSO Nazha Cherkaoui; Abdelaziz Belfqih; Faissal El Mariami; Jamal Boukherouaa; Abdelmajid Berdai
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 5: October 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (824.63 KB) | DOI: 10.11591/ijece.v9i5.pp3407-3414

Abstract

Nowadays, the use of the wind energy has known an important increase because it is clean and cheap. However, many technical issues could occur due to the integration of wind power plants into power grids. As a result, many countries have published grid code requirements that new installed wind turbines have to satisfy in order to facilitate its intergration to electrical networks. Among those requirements, the wind farms must be able to participate to ancillary services for instance voltage regulation and reactive power control. Nevertheless, in case of small wind farms having not the necessary reactive power capability to contribute to reactive power support, Flexible AC Transmission Systems (FACTS) devices could also be used to participate to reactive power support. In this paper, an optimization method based on particle swarm optimization (PSO) technique is presented. This method allows getting the optimal location and reactive power injection of both wind power plants (WPP) and synchronous var compensators (SVC) with the objective to improve the voltage profile and to minimize the active power losses. The IEEE 14 bus system and a 20 MW wind farm based doubly fed induction generator (DFIG) are used to validate the proposed algorithm. The simulation results are analysed and compared.
Detection of Rogue Access Point in WLAN using Hopfield Neural Network Menal Dahiya; Sumeet Gill
International Journal of Electrical and Computer Engineering (IJECE) Vol 7, No 2: April 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (882.612 KB) | DOI: 10.11591/ijece.v7i2.pp1060-1070

Abstract

The serious issue in the field of wireless communication is the security and how an organization implements the steps against security breach. The major attack on any organization is Man in the Middle attack which is difficult to manage. This attack leads to number of unauthorized access points, called rogue access points which are not detected easily. In this paper, we proposed a Hopfield Neural Network approach for an automatic detection of these rogue access points in wireless networking. Here, we store the passwords of the authentic devices in the weight matrix format and match the patterns at the time of login. Simulation experiment shows that this method is more secure than the traditional one in WLAN.
A solar fed BLDC motor drive for mixer grinder using a buck converter Deekshitha S. Nayak; R. Shivarudraswamy
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 2: April 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (721.335 KB) | DOI: 10.11591/ijece.v10i2.pp1113-1121

Abstract

In large and small scale applications, different kinds of variable speed driving systems can be found. For saving the energy consumption of these devices, eco-friendly electronics are used, which lead to the development of the Brushless DC motor (BLDC). Its higher power density, higher efficiency, higher torque at low speed, and low maintenance enhances the use of a BLDC motor. The existing mixer grinder consists of the universal motor, which operates in alternating current supply due to high starting torque characteristics and simple controlling of the speed. The absence of brushes and the reduction of noise in the BLDC extends its life and makes it ideal in a mixer grinder. A solar-powered BLDC motor drive for a mixer grinder is presented in this paper. A DC-DC buck converter is utilized to operate the PV (photovoltaic) array at its maximum power. The proposed hysteresis current control BLDC system has been developed in the MATLAB. The commercially available mixer grinder is presented along with the proposed simulated system for performance comparison. It can be concluded that at the no load condition, the efficiency of the experimental existing mixer grinder is 51.03% and simulated proposed system is 81.25% and at load condition, the efficiency of the experimental mixer grinder is 49.32% and simulated system is 79.85%.
A Novel Design of Voltage Controlled Oscillator By using the Method of Negative Resistance Ayoub Malki; Larbi El Abdellaoui; Jamal Zbitou; A. Errkik; A. Tajmouati; Mohamed Latrach
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 6: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (845.947 KB) | DOI: 10.11591/ijece.v8i6.pp4496-4504

Abstract

The objective of this paper is to develop a new design of a voltage controlled microwave oscillator by using the method of negative resistance in order to fabricate VCO with very good performance in terms of tuning rang, phase noise, output power and stability. The use of hybrid microwave integrated circuit technology’s (HMIC) offers a lot of advantage for our structure concerning size, cost, productivity, and Q factor. This VCO is designed at [480MHz; 1.4GHz] frequency for applications in the phase locked loop (PLL) for signal tracking, FM demodulation, frequency modulation, mobile communication, etc. The different steps of studied voltage controlled oscillator’s design are thoroughly described. Initially designed at a fixed frequency meanwhile the use of a varactor allow us to tune the frequency of the second design. It has been optimized especially regarding tuning bandwidth, power, phase noise, consumption and size of the whole circuit. The achieved results and proposed amendment are the product of theoretical study and predictive simulations with advanced design system microwave design software. A micro-strip VCO with low phase noise based on high gain ultra low noise RF transistor BFP 740 has been designed, fabricated, and characterized. The VCO delivers a sinusoidal signal at the frequency 480 MHz with tuning bandwidth 920 MHz, spectrum power of 12.62 dBm into 50 Ω load and phase noise of -108 dBc/Hz at 100 Hz offset. Measurement results and simulation are in good agreement. Circuit is designed on FR4 substrate which includes integrated resonators and passive components.
Analysis of Raindrop Diameters for Rainfall Attenuation in Southern Africa Oluwumi Adetan; Obiseye Obiyemi
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 1: February 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (322.663 KB) | DOI: 10.11591/ijece.v6i1.pp82-89

Abstract

The influence of critical raindrop diameters on the specific rainfall attenuation in Durban (29o52'S, 30o58'E), South Africa using various rainfall regimes is analyzed in this paper. Different rain rate values representing drizzle, widespread, shower and thunderstorm are selected for the purpose of analysis over the measured raindrop size distribution. The three-parameter lognormal and gamma DSD models with shape parameter of 2 are used to estimate the parameters required to investigate the drop sizes which produce a major contribution to the total specific rainfall attenuation for the selected rain rate values. The computed total specific attenuation increases with increasing frequencies and rain rates. The highest and prevailing contribution to the specific attenuation occurs at  for the stratiform (drizzle or widespread) and convective (shower or thunderstorm) rain types for the models considered.  The total percentage fraction formed by drops in the diameter range 0.5 mm ≤ D ≤ 2.5 mm and 1.0 mm ≤ D ≤ 3.0 mm are found to be most critical for the specific rain attenuation for the stratiform (drizzle and widespread)  and convective (shower and thunderstorm) rainfall types especially at higher frequencies.
Hybrid Microstrip Diplexer Design for Multi-band WiMAX Application in 2.3 and 3.5 GHz Bands M. A. Sazali; N. A. Shairi; Z. Zakaria
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 1: February 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1018.574 KB) | DOI: 10.11591/ijece.v8i1.pp576-584

Abstract

In this paper, a design of hybrid microstrip diplexer is proposed for multi-band Worldwide Interoperability for Microwave Access (WiMAX) application in 2.3 and 3.5 GHz bands. The diplexer consists of a combination of two different filter designs. These filters were designed based on microstripline coupling techniques in order to obtain minimum insertion losses and achieve the desired frequency bandwidth. Therefore, a coupled open loop ring resonator was chosen for the filter design in 2.3 GHz band and a folded coupled line resonator was chosen for the filter design in 3.5 GHz band. Then, these filters were combined with a ring manifold matching network to be a hybrid microstrip diplexer. Based on the results, good agreements were achieved between the simulation and measurement results in terms of insertion loss, return loss and bandwidth in the 2.3 and 3.5 GHz bands.
Performance Evaluation of Rain Attenuation Models in a Tropical Station Abayomi Isiaka Yussuff; Nor Hisham Bin Haji Khamis; Azli Yahya
International Journal of Electrical and Computer Engineering (IJECE) Vol 4, No 5: October 2014
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (254.09 KB)

Abstract

The non-uniformity of rainfall in both the horizontal and vertical directions makes the estimation of slant path attenuation complex. At frequencies above 10 GHz, the effects of attenuation and noise induced by rain are quite significant. One year satellite attenuation data were sourced from Malaysia East Asia Satellite at Ku frequency band; using ASTRO beacon signals to monitor and measure the slant path rain rate and attenuation at Universiti Teknologi Malaysia, Skudai. Four years’ one minute rain rate ground data at 0.01% of time exceeded were collected using rain gauge. The attenuation exceeded for other percentages of the time was obtained using statistical methods. Different rain attenuation prediction models were investigated and their performances compared. The validation results clearly suggested that the Breakpoint attenuation prediction model produced better results when compared with other models of interest.DOI:http://dx.doi.org/10.11591/ijece.v4i5.6583
Portable and Efficient Fingerprint Authentication System Based on a Microcontroller Mauricio García Vargas; Fredy Edimer Hoyos; John Edwin Candelo
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 4: August 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (511.709 KB) | DOI: 10.11591/ijece.v9i4.pp2346-2353

Abstract

This paper presents the design of a fingerprint authentication system based on a simple microcontroller and the fingerprint sensor. The circuit diagram and details regarding the procedure are included. The system was programed in MPLAB and then embedded into the microcontroller. Communication between the PIC and sensor is by RS232 protocol. The results show that the system recognizes the fingerprint in less than 1 second. It is portable and there is no need for image processing. Furthermore, the system shows a high effectiveness when storing and verifying fingerprints.
Power Quality Enhancement in Grid Connected PV Systems using High Step Up DC-DC Converter V S Prasadarao K; K V Krishna Rao; P Bala Koteswara Rao; T. Abishai
International Journal of Electrical and Computer Engineering (IJECE) Vol 7, No 2: April 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (730.771 KB) | DOI: 10.11591/ijece.v7i2.pp720-728

Abstract

Renewable energy sources (RES) are gaining more importance in the present scenario due to the depletion of fossil fuels and increasing power demand. Solar energy is the one of the most promising as it is clean and easily available source. The voltage obtained from the PV system is low. This voltage is increased by high step up dc-dc converter which uses only one switch leads to low switching losses and hence the efficiency of this converter is high. To get the good response this converter is operated in closed loop manner. Integration of PV system with existing grid has so many issues like distorted voltage, current and reactive power control etc. This paper presents a four leg inverter which works on hysteresis current control technique to address the power quality issues like reactive power compensation, balanced load currents and compensation of neutral current. The switching to the inverter is designed in such a way that it supplies the extra current to stabilise the current of the grid that is being supplied to the loads. Finally, the proposed technique is validated by using mat lab/Simulink software and corresponding results are presented in this paper.
Cognitive Architecture to Analyze the Effect of Intrinsic Motivation with Metacognition over Extrinsic Motivation on Swarm Agents Ashwini Kodipalli
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 5: October 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (294.279 KB) | DOI: 10.11591/ijece.v8i5.pp3984-3990

Abstract

This research work describes the setup of framework for testing the performance of intrinsically motivated swarm agents over extrinsic motivation. The performance is tested through the simulation. The result demonstrates that agents with intrinsic motivation for specific goal have high metacognitive ability. It also shows group performance of agents with metacognitive ability is better than the group of agents with extrinsic motivation exhibiting cognitive ability. Goal setting theory of motivation is applied to the group of agents in order to analyse the intelligent behaviour of the agents. This research is mainly focusing on why and how group performance by swarm agents is better than individuals. This approach requires design of ambient testbed where swarm agents demonstrate cognitive actions to metacognitive actions. This research is aiming to prove that group performance by swarm agents is higher due to type of agents chosen with intrinsic motivation and thus proves intrinsic motivation is better than extrinsic motivation. Agent behaviour in a group can be analysed using different metrics like resource collection, life expectancy, level of motivation and task assigned.

Filter by Year

2011 2026


Filter By Issues
All Issue Vol 16, No 1: February 2026 Vol 15, No 6: December 2025 Vol 15, No 5: October 2025 Vol 15, No 4: August 2025 Vol 15, No 3: June 2025 Vol 15, No 2: April 2025 Vol 15, No 1: February 2025 Vol 14, No 6: December 2024 Vol 14, No 5: October 2024 Vol 14, No 4: August 2024 Vol 14, No 3: June 2024 Vol 14, No 2: April 2024 Vol 14, No 1: February 2024 Vol 13, No 6: December 2023 Vol 13, No 5: October 2023 Vol 13, No 4: August 2023 Vol 13, No 3: June 2023 Vol 13, No 2: April 2023 Vol 13, No 1: February 2023 Vol 12, No 6: December 2022 Vol 12, No 5: October 2022 Vol 12, No 4: August 2022 Vol 12, No 3: June 2022 Vol 12, No 2: April 2022 Vol 12, No 1: February 2022 Vol 11, No 6: December 2021 Vol 11, No 5: October 2021 Vol 11, No 4: August 2021 Vol 11, No 3: June 2021 Vol 11, No 2: April 2021 Vol 11, No 1: February 2021 Vol 10, No 6: December 2020 Vol 10, No 5: October 2020 Vol 10, No 4: August 2020 Vol 10, No 3: June 2020 Vol 10, No 2: April 2020 Vol 10, No 1: February 2020 Vol 9, No 6: December 2019 Vol 9, No 5: October 2019 Vol 9, No 4: August 2019 Vol 9, No 3: June 2019 Vol 9, No 2: April 2019 Vol 9, No 1: February 2019 Vol 8, No 6: December 2018 Vol 8, No 5: October 2018 Vol 8, No 4: August 2018 Vol 8, No 3: June 2018 Vol 8, No 2: April 2018 Vol 8, No 1: February 2018 Vol 7, No 6: December 2017 Vol 7, No 5: October 2017 Vol 7, No 4: August 2017 Vol 7, No 3: June 2017 Vol 7, No 2: April 2017 Vol 7, No 1: February 2017 Vol 6, No 6: December 2016 Vol 6, No 5: October 2016 Vol 6, No 4: August 2016 Vol 6, No 3: June 2016 Vol 6, No 2: April 2016 Vol 6, No 1: February 2016 Vol 5, No 6: December 2015 Vol 5, No 5: October 2015 Vol 5, No 4: August 2015 Vol 5, No 3: June 2015 Vol 5, No 2: April 2015 Vol 5, No 1: February 2015 Vol 4, No 6: December 2014 Vol 4, No 5: October 2014 Vol 4, No 4: August 2014 Vol 4, No 3: June 2014 Vol 4, No 2: April 2014 Vol 4, No 1: February 2014 Vol 3, No 6: December 2013 Vol 3, No 5: October 2013 Vol 3, No 4: August 2013 Vol 3, No 3: June 2013 Vol 3, No 2: April 2013 Vol 3, No 1: February 2013 Vol 2, No 6: December 2012 Vol 2, No 5: October 2012 Vol 2, No 4: August 2012 Vol 2, No 3: June 2012 Vol 2, No 2: April 2012 Vol 2, No 1: February 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue