cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Power Electronics and Drive Systems (IJPEDS)
ISSN : -     EISSN : 20888694     DOI : -
Core Subject : Engineering,
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Arjuna Subject : -
Articles 60 Documents
Search results for , issue "Vol 12, No 2: June 2021" : 60 Documents clear
Modeling and control of two five-phase induction machines connected in series powered by matrix converter Mohamed Nekkaz; Abdelkader Djahbar; Rachid Taleb
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i2.pp685-694

Abstract

The two five-phase Induction Motor (IM) drive system that is serially connected is available in literature. The power supply of such system is considered as a matrix converter (a direct AC to AC converter system) by three and five-phases outputs. The main benefit from the drive topology is the sinusoidal source as a side current with a controllable input side power factor. The decoupled control is achieved similarly to the inverter based drive system. In this paper; the decoupled control of two five-phase induction machines serially connected and powered by a five-phase matrix converter as well as analytical and simulation results are presented.
Data bank: nine numerical methods for determining the parameters of weibull for wind energy generation tested by five statistical tools Ahmed Samir Badawi; Siti Hajar Yusoff; Alhareth Mohammed Zyoud; Sheroz Khan; Aisha Hashim; Yılmaz Uyaroğlu; Mahmoud Ismail
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i2.pp1114-1130

Abstract

This study aims to determine the potential of wind energy in the mediterranean coastal plain of Palestine. The parameters of the Weibull distribution were calculated on basis of wind speed data. Accordingly, two approaches were employed: analysis of a set of actual time series data and theoretical Weibull probability function. In this analysis, the parameters Weibull shape factor ‘k’ and the Weibull scale factor ‘c’ were adopted. These suitability values were calculated using the following popular methods: method of moments (MM), standard deviation method (STDM), empirical method (EM), maximum likelihood method (MLM), modified maximum likelihood method (MMLM), second modified maximum likelihood method (SMMLM), graphical method (GM), least mean square method (LSM) and energy pattern factor method (EPF). The performance of these numerical methods was tested by root mean square error (RMSE), index of agreement (IA), Chi-square test (X2), mean absolute percentage error (MAPE) and relative root mean square error (RRMSE) to estimate the percentage of error. Among the prediction techniques. The EPF exhibited the greatest accuracy performance followed by MM and MLM, whereas the SMMLM exhibited the worst performance. The RMSE achieved the best prediction accuracy, whereas the RRMSE attained the worst prediction accuracy.
Power management strategy based sugeno fuzzy logic rules in an electric wheelchair Abdeselem, Chakar; Othmane, Abdelkhalek; Brahim, Gasbaoui; Amine, Soumeur Mohammed; Oussama, Hafsi; Amine, Hartani Mohammed
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i2.pp1187-1195

Abstract

Power management in multi-power supply electrical systems to manage the general system behavior is essential to improve autonomy and efficiency. In this paper, a proposed fuzzy-logic power management-based sugeno rule is applied in a hybrid PV/battery electric wheelchair to ameliorate the battery life cycle and the overall autonomy. Besides, the increment conductance INC MPPT is used to maximize PVpower. The electric wheelchair's general topology comprises photovoltaic energy resources as the main source and the battery energy storage system device as the auxiliary source. This hybrid power source system supplied the electric wheelchair composed two permanent magnet DC motors controlled by a PI controller. MATLAB/Simulink program is used to implement the overall control scheme. The simulation results that were obtained and the detailed study demonstrate the feasibility and performance of this intelligent strategy.
Output voltage regulation of synchronous generator using PSO algorithm-based PI controller Fatiha Habbi; Nour El Houda Gabour; El Ghalia Boudissa; M’hamed Bounekhla
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i2.pp1216-1227

Abstract

In this paper a regulation of the terminal voltage of synchronous generator (SG) has been developed. Here, the nonlinear model of the SG is used directly without requirement for a linearized mathematical model of the generator. A proportional integral PI-controller is used to adjust the duty cycle of the DC chopper of step-down type for controlling the field voltage and consequently the output voltage of the generator. Furthermore, Particle swarm optimization (PSO) algorithm is employed as an optimization technique for tuning the optimal parameters of the PI controller (Kp and Ki). This is achieved by the minimization of the quadratic output error between the reference voltage and the output voltage calculated from the adopted model at the same time. In order to test the performance of the PSO-PI controller, results are compared with the genetic algorithm (GA). Moreover, to reduce the overshoot resulting in the response of the terminal voltage, a varied reference voltage is adopted. Results obtained show the superiority of the varied reference voltage to decrease the overshoot versus the fixed reference voltage.
System efficiency prediction of a 1kW capacity grid-tied photovoltaic inverter Saurav Das; Dhiman Chowdhury; Md. Abdur Razzak
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i2.pp1177-1186

Abstract

This article presents the system design and prediction performance of a 1kW capacity grid-tied photovoltaic inverter applicable for low or medium-voltage electrical distri-bution networks. System parameters, for instance, the longitude and latitude of the solar plant location, panel orientation, tilt and azimuth angle calculation, feasibility testing, optimal sizing of installment are analyzed in the model and the utility is sim-ulated precisely to construct an efficient solar power plant for residential applications. In this paper, meteorological data are computed to discuss the impact of environmen-tal variables. As regards ensuring reliability and sustenance, a simulation model of the system of interest is tested in the PVsyst software package. Simulation results yield that the optimum energy injected to the national grid from the solar plant, specific pro-duction, and performance ratio are 1676kWh/year, 1552kWh/kWp/year, and 79.29% respectively. Moreover, the predicted carbon footprint reduction is 23.467 tons during the 30 years lifetime of the system. Therefore, the performance assessments affirm the effectiveness of the proposed research.
Performance analysis and enhancement of direct power control of DFIG based wind system Mohamed Amine Beniss; Hassan El Moussaoui; Tijani Lamhamdi; Hassane El Markhi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i2.pp1034-1044

Abstract

The paper proposes a complete modeling and control technique of variable speed wind turbine system (WTS) based on the doubly fed induction generator (DFIG). Two levels back-to-back converter is used to ensure the energy transfer between the DFIG rotor and the grid. The wind turbine to operate efficiently, a maximum power point tracking (MPPT) algorithm is implemented. Then, direct power control (DPC) strategy has been combined with the MPPT technique in order to guarantee the selection of the appropriate rotor voltage vectors and to minimize the active and reactive power errors. Finally, the simulation is performed by using MATLAB/simulink platform basing on 7.5KW DFIG wind generation system, and the results prove the effectiveness of our proposed control technique.
Implementation of non-isolated three-port converter through augmented time response Ramya Devasahayam; Godwin Immanuel D
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i2.pp913-923

Abstract

The work is concerning a multi-port dc-dc converter with improved time response and steady state output. Here the converter carries bare amount of switches for managing the power with mono inductance. The inductance and along with that the switched capacitance are pre owned to bring large voltage gain. This paper put forwarded an appropriate controller for the closed loop monitored high-gain converter with three ports. Higher is that the conversion rate. This converter is also a good interface between DC-source and load that aims to progressing time response with FLC and PI controller in the closed loop system. The converter with the PI controller and FLC is look over and the fast responses are compared with time domain specifications. The simulation outcome indicates that the FLC based converter brings most excellent time domain response.
Active damping and robust loop shaping control for harmonic minimization Oscar Andrew Zongo; John Mbogo Kafuku
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i2.pp832-844

Abstract

This paper presents an h-infinity robust loop shaping control and LCL filter to mitigate the effects of harmonic currents in the photovoltaic system integrated with the grid. To eliminate the negative effects of the LCL filter, this work applied notch filter active damping. Existing methods for the elimination of harmonic currents were reviewed. Proportional integral control, fuzzy logic control, h-infinity control, and robust loop shaping control are presented. The grid current was analyzed in the system with all controllers applied to control the voltage source inverter of the system to eliminate harmonics in the grid current caused by the inverter and nonlinear loads for two cases, one being constant loading of the linear and nonlinear load and another is the switching of the nonlinear load during the simulation. The results obtained from the proposed method for the two tests conducted were compared with those from other methods to prove the robustness of the proposed technique. The method manages to reduce the total harmonic distortion of the grid current from 7.85% to 0.79% for case 1 and from 11.67% to 1.14% for case 2.
Comparison between butterfly optimization algorithm and particle swarm optimization for tuning cascade PID control system of PMDC motor Kareem G. Abdulhussein; Naseer M. Yasin; Ihsan J. Hasan
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i2.pp736-744

Abstract

In this paper, two optimization methods are used to adjust the gain values for the cascade PID controller. These algorithms are the butterfly optimization algorithm (BOA), which is a modern method based on tracking the movement of butterflies to the scent of a fragrance to reach the best position and the second method is particle swarm optimization (PSO). The PID controllers in this system are used to control the position, velocity, and current of a permanent magnet DC motor (PMDC) with an accurate tracking trajectory to reach the desired position. The simulation results using the Matlab environment showed that the butterfly optimization algorithm is better than the particle swarming optimization (PSO) in terms of performance and overshoot or any deviation in tracking the path to reach the desired position. While an overshoot of 2.557% was observed when using the PSO algorithm, and a position deviation of 7.82 degrees was observed from the reference position.
A neuro-fuzzy approach for tracking maximum power point of photovoltaic solar system Aouatif Ibnelouad; Abdeljalil Elkari; Hassan Ayad; Mostafa Mjahed
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i2.pp1252-1264

Abstract

This work presents a hybrid soft-computing methodology approach for intelligent maximum power point tracking (MPPT) techniques of a photovoltaic (PV) system under any expected operating conditions using artificial neural network-fuzzy (neuro-fuzzy). The proposed technique predicts the calculation of the duty cycle ensuring optimal power transfer between the PV generator and the load. The neuro-fuzzy hybrid method combines artificial neural network (ANN) to direct the controller to the region where the MPP is located with its reference voltage estimator and its block of neural order. After that, the fuzzy logic controller (FLC) with rule inference begins to establish the photovoltaic solar system at the MPP. The obtained simulation results using MATLAB/simulink software for the proposed approach compared to ANN and the perturb and observe (P&O), proved that neuro-fuzzy approach fulfilled to extract the optimum power with pertinence, efficiency and precision

Filter by Year

2021 2021


Filter By Issues
All Issue Vol 16, No 4: December 2025 Vol 16, No 3: September 2025 Vol 16, No 2: June 2025 Vol 16, No 1: March 2025 Vol 15, No 4: December 2024 Vol 15, No 3: September 2024 Vol 15, No 2: June 2024 Vol 15, No 1: March 2024 Vol 14, No 4: December 2023 Vol 14, No 3: September 2023 Vol 14, No 2: June 2023 Vol 14, No 1: March 2023 Vol 13, No 4: December 2022 Vol 13, No 3: September 2022 Vol 13, No 2: June 2022 Vol 13, No 1: March 2022 Vol 12, No 4: December 2021 Vol 12, No 3: September 2021 Vol 12, No 2: June 2021 Vol 12, No 1: March 2021 Vol 11, No 4: December 2020 Vol 11, No 3: September 2020 Vol 11, No 2: June 2020 Vol 11, No 1: March 2020 Vol 10, No 4: December 2019 Vol 10, No 3: September 2019 Vol 10, No 2: June 2019 Vol 10, No 1: March 2019 Vol 9, No 4: December 2018 Vol 9, No 3: September 2018 Vol 9, No 2: June 2018 Vol 9, No 1: March 2018 Vol 8, No 4: December 2017 Vol 8, No 3: September 2017 Vol 8, No 2: June 2017 Vol 8, No 1: March 2017 Vol 7, No 4: December 2016 Vol 7, No 3: September 2016 Vol 7, No 2: June 2016 Vol 7, No 1: March 2016 Vol 6, No 4: December 2015 Vol 6, No 3: September 2015 Vol 6, No 2: June 2015 Vol 6, No 1: March 2015 Vol 5, No 4: 2015 Vol 5, No 3: 2015 Vol 5, No 2: 2014 Vol 5, No 1: 2014 Vol 4, No 4: December 2014 Vol 4, No 3: September 2014 Vol 4, No 2: June 2014 Vol 4, No 1: March 2014 Vol 3, No 4: December 2013 Vol 3, No 3: September 2013 Vol 3, No 2: June 2013 Vol 3, No 1: March 2013 Vol 2, No 4: December 2012 Vol 2, No 3: September 2012 Vol 2, No 2: June 2012 Vol 2, No 1: March 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue