International Journal of Power Electronics and Drive Systems (IJPEDS)
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Articles
60 Documents
Search results for
, issue
"Vol 12, No 2: June 2021"
:
60 Documents
clear
A finite set-model predictive control based on FPGA flatform for eleven-level cascaded H-Bridge inverter fed induction motor drive
Mai Van Chung;
Do Tuan Anh;
Phuong Vu
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i2.pp845-857
Model predictive control has been considered as a powerful alternative control method in power converters and electrical drives recently. This paper proposes a novel method for finite control set predictive control algorithm foran induction motor fed by 11-level cascaded H-Bridge converter. To deal with the high computation volume of MPC algorithm applied for CHBconverter, 7-adjacent vectors method is applied for calculating the desired voltage vector which minimizes the cost function. Moreover, by utilizingfield programmable gate array (FPGA) platform with its flexible structure,the total execution time reduces considerably so that the selected voltage vector can be applied immediately without delay compensation. This method improves the dynamic responses and steady-state performance of the system. Finally, experimental results verify the effectiveness of control design
Design and implementation of a single-phase five-level inverter using a DC Source with voltage balancer on capacitor
Leonardus Heru Pratomo;
Slamet Riyadi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i2.pp902-912
The global use of renewable energy resources has led to the design and development of high performance, efficient, controllable, and cheap multilevel inverters, which act as a solution to the numerous power deficiencies. However, in terms of control, these multilevel inverters are often associated with DC sources and complexity. Therefore, this research designed a single-phase five-level inverter using a DC source, with a novel sinusoidal pulse-width-modulated (SPWM) control scheme. The system consists of a Flying Capacitor DC-DC Converter and H-Bridge Inverter (FCDCDC-HBI). A single absolute reference signal and the phase-shifted triangular carrier were used to generate SPWM to enhance the capacitor voltage balance. The designed inverter is capable of producing five levels of output voltage levels, namely Vi, Vi/2, 0, −Vi/2, and −Vi from a DC supply, thereby reducing the overall cost and complexity of the SPWM system. This research also produced a detailed operation principle of the proposed system, which was verified through simulation and implemented using a prototype. Finally, hardware implementation results are presented to check the performance of the inverter.
Droop-free controls of inverter-based generator for use in systems that interconnected with synchronous generators
Suchart Janjornmanit;
Sakorn Panta;
Wirat Nakkrongdee
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i2.pp765-771
Because of its simplicity and autonomous operation, droop control technique is widely implemented for power generation control in microgrids. Despite its popularity, it has been reported that the technique has the stability problem. In this paper, the previous work of droop-free inverter-based generator designed for operating in a fix frequency islanded microgrid, is redesigned to have the ability to operate in both islanded and grid connected microgrid as well as to the main power grid where it interconnected with synchronous generators. The proposed voltage source inverters use phase locked loop(PLL) algorithm to synchronize the changing frequency due to the operation of the synchronous generator. Unlike the frequency droop control that the output frequency is varied as its active power changed, the proposed controls do not make an adjustment of the system frequency. This kind of operation reduces the chance of the system unstable due to severe frequency change and it also reduces the frequency deviation when it increases its active power output. Simulation and result of the meshed power network demonstrate the feasibility to implement the proposed controls in thereal system.
Torque ripple and noise control of switched reluctance motor using an adaptive fuzzy PI control with the aid of AR algorithm
Rekha P S;
Vijayakumar T.
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i2.pp1239-1251
In recent days switched reluctance motor is widely used for numerous industrial applications due to its simple structure, minimum cost and maximum efficiency. Regardless of numerous exclusive benefits of the switched reluctance motor (SRM), acoustic noise of this motor is high and it is important to accomplish more analysis on the noise lessening, which is the primary goal of this paper. The major causes of acoustic noise in a SRM are torque ripple and radial magnetic force. Since radial magnetic force is highly influential by the design of motor, torque ripple control is analysed in this article for acoustic noise control. Torque ripple control of SRM is proposed using optimization in direct torque control (DTC) method. Nowadays, optimisation plays a crucial role in motor drives for enhanced control. In this paper, artificial raindrop algorithm is proposed in DTC of SRM to minimise torque ripple. Performance of proposed ARA based DTC of four-phase 8/6 SRM is analysed using Matlab and compared with the performance of fuzzy gain scheduling PI controller based DTC.
Voltage control of AC hybrid microgrid
Pranay Kumar Panda;
Abhisek Sahoo;
Asutosh Samal;
Debani Prasad Mishra;
Surender Reddy Salkuti
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i2.pp793-802
The decline of competence effectuated by the unreplenishable energy etymology due to the plummet of fossil fuels has created an alternate need for renewable energy sources to play a vital role in providing power at a larger scale. Thus, a new system of distribution of energy resources is introduced to tackle the ever-growing demand for power and safety of the environment using renewable energy sources with the traditional ways of transmitting power. Such challenges can be overcome by using hybrid microgrids which helps in detecting and hegemonizing faults more dexterously sanctioning sharing of load and instinctive switching through various algorithms thus improving the system accuracy and adaptability. This exertion incorporates the modeling of an AC hybrid microgrid system analyzed in the is-landed mode. Fuel stack and the photo-voltaic cell are used as renewable energy power sources. It also includes the PID control method to the solution the most encountered problems in a microgrid. The engaged control modus operandi can modulate and regulate the output voltage at an expected and paradigm value. The whole AC hybrid microgrid and its control are simulated in MATLAB/simulink R2020b.
Machine learning based multi class fault diagnosis tool for voltage source inverter driven induction motor
Jyothi R;
Tejas Holla;
Uma Rao K;
Jayapal R
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i2.pp1205-1215
AC drives are employed in process industries for varying applications resulting in a wide range of ratings. The entire process industry has seen a paradigm shift from manual to automated systems. The major factor contributing to this is the advanced power electronics technology enabling power electronic drives for smooth control of electric motors. Induction motors are most commonly used in industries. Faults in the power electronic circuits may occur periodically. These faults often go unnoticed as they rarely cause a complete shutdown and the fault levels may not be large enough to lead to a breakdown of the drive. An early detection of these faults is required to prevent their escalation into major faults. The diagnostic tool for detection of faults requires real time monitoring of the entire drive. In this work, detailed investigation of different faults that can occur in the power electronic circuit of an industrial drive is carried out. Analysis and impact of faults on the performance of the induction motor is presented. A real time monitoring platform is proposed to detect and classify the fault accurately using machine learning. A diagnostic tool also is developed to display the severity and location of the fault to the operator to take corrective measures.
Design and implementation of multilevel non-isolated DC-DC converter for variable DC voltage source
Ali Ahmed Adam Ismail;
A. Elnady
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i2.pp994-1005
In this paper, a non-isolated multi-level DC-DC (MLDC-DC) smooth buck converter with the LC filter is designed and analyzed. The presented topology can be used in low or medium voltage levels in several applications that use DC storage elements. The use of the proposed multilevel converter topology reduces the voltage stress across the power converter switching elements and facilitates the voltage rating of the switches. The designed LC filter for the multilevel converter is characterized by a small inductor size, which reduces the traditional bulky inductor used in the output of the traditional DC-DC converter. The reduction in the filter size is proportional to the number of the connected voltage sources, it works effectively to reduce ripple in the load currents, and it increases the voltage gain. The intensive analysis of the converter system and the experimental results show a stable operation of the proposed converter with precise output voltage.
Acoustic study of the influence of climate change on the propagation of noise generated by industrial units in real-time: by an industrial zone in Algeria
Arbaoui Iliace;
Tadjeddine Ali Abderrazak;
Hamiani Hichem;
Hamou Ahmed
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i2.pp1275-1282
The industrial revolution in the field of gas and oil treatment that has known the Oran region-Algeria-has participated in the production and propagation of noise pollution and loud noises on the environment and around the places residential, for this, a multitude of noises are now part of our daily life. This contribution concerns the propagation of noise pollution in the industrial environment and the effects caused by atmospheric pollution which has a great influence on the phenomenon of planetary climate change and on meteorological parameters, the latter having a great influence on the propagation of noise. Our study is part of the objective of evaluating the noise levels emitted by gas installations in the industrial zone of ArzewOran, and of seeing the effects of the variation of meteorological parameters on the propagation of noise. To do this, we have adopted a precise in-situ methodology. Subsequently, for the processing of the measurement results, we opted for the COD-TYMPAN software in real-time as a calculation tool to interpret our results
Controller design for PV experimental bench with ADRC strategy supervised by Labview created interface
Naoufel Khaldi;
Youssef Barradi;
Khalida Zazi;
Malika Zazi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i2.pp1162-1176
The converter control scheme plays an important role in the performance of maximum power point tracking (MPPT) algorithms. In this work, a model has been analysed, designed and simulatedon Power Simulator software and in Matlab Simulink.A hardware implementation using a microcontroller (Arduino Mega 2560 based on ATmega2560) is provided, that operateson feedback from a PV panel voltage and current to control the operation of DCDC converter in order to draw maximum power. Newactive disturbance rejection control (ADRC) algorithm is required to extract the maximum power of the solar energy. This MPPT controller incorporates a boost topology that ensuresa two continuous battery in series (12V, 5Ah) charging in various conditions. The whole of the results shows in one hand that the converter efficiency is very satisfactory, and in the other hand a very good agreement between the results simulated and those experimental in terms of performance. The proposed system is designed in Proteus, and implemented on hardware with a graphical user interface built throughout Labview software.
The origin of cycle life degradation of a lead-acid battery under constant voltage charging
Arif Hariyadi;
Awan Nugroho;
Suwarno Suwarno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i2.pp986-993
Due to its low cost and recycle-ability, the lead-acid battery is widely used in mobile and stationary applications. Despite much research on lead-acid batteries, the effect of charging voltage on the degradation mechanism requires further investigation. In particular, the origin of cycle life degradation remains unclear. In the present work, by using electrochemical tests and materials characterization, we studied the effect of charging voltage at voltages slightly higher than the open-circuit potential (OCP) i.e., 103-107% OCP, on the battery life cycle. The highest degradation was observed at 105% OCP charging voltage. Based on the materials characterization results, we found that the degradation of a lead-acid battery is influenced by the amount of hard sulfate and the sulfate particles' size.