International Journal of Power Electronics and Drive Systems (IJPEDS)
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Articles
60 Documents
Search results for
, issue
"Vol 12, No 2: June 2021"
:
60 Documents
clear
Energy, economic and environmental analysis of fuzzy logic controllers used in smart buildings
Ali M Baniyounes;
Yazeed Yasin Ghadi;
Maryam Mahmoud Akho Zahia;
Eyad Adwan;
Kalid Oliemat
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i2.pp1283-1292
This article is divided into three parts: the first presents a simulation study of the effect of occupancy level on energy usage pattern of Engineering building of Applied Science Private university, Amman, Jordan. The simulation was created on simulation mechanism by means of EnergyPlus software and improved by using the building’s data such as building’s as built plan, occupant’s density level based on data about who utilize the building throughout operational hours, energy usage level, Heating Ventilating and air conditioning (HVAC) system, lighting and its control systems and etc. Data regarding occupancy density level estimation is used to provide the proposed controller with random number of users grounded on report were arranged by the university’s facilities operational team. The other division of this paper shows the estimated saved energy by the means of suggested advanced add-on, FUZZY-PID controlling system. The energy savings were divided into summer savings and winter savings. The third division presents economic and environmental analysis of the proposed advanced fuzzy logic controllers of smart buildings in Subtropical Jordan. The economic parameters that were used to evaluate the system economy performance are life-cycle analysis, present worth factor and system payback period. The system economic analysis was done using MATLAB software
Control of power converter used for electric vehicle DC charging station with the capability of balancing distribution currents and reactive power compensation
Moien A. Omar;
Marwan M. Mahmoud
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i2.pp924-931
The global interest in electric cars aims to achieve sustainability in the transportation sector and reduce dependence on conventional cars that mainly depend on fossil fuels, the main source of emissions polluting the environment. However, the electric cars required electric fast chargers to charge the batteries with high currents in order to make the electric cars competitive with conventional cars that required a short time for filling fuel. Single-phase electric chargers make the distribution feeders with unbalanced currents as the single-phase loads and single-phase PV inverters. In the case of the unbalanced operation, one of the three phases may reach its maximum limit before other phases which leads to disconnect the transformer and thereby inefficient and unreliable system operation. This paper presents a control scheme for a three-phase, four-leg power converter that can be used as a fast charger for electric cars. Moreover, it can be used for balancing grid currents and for reactive power compensation. This will avoid frequent interruptions of distribution transformers due to unbalanced operation and reactive power loads. The distribution feeder considered to evaluate the control scheme consists of single-phase loads and inverters in addition to the proposed converter. The converter controls the charging power effectively and balancing the feeder currents. Moreover, during off charging time which is a possible manner for the charging station when the EV battery is fully charged the converter is effectively used for unbalanced mitigation and reactive power compensation. The simulated results show the effectiveness of the proposed control scheme.
Lithium ferro phosphate battery state of charge estimation using particle filter
Noor Iswaniza Md Siam;
Tole Sutikno;
Mohd Junaidi Abdul Aziz
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i2.pp975-985
Lithium ferro phosphate (LiFePO4) has a promising battery technology with high charging/discharging behaviours make it suitable for electric vehicles (EVs) application. Battery state of charge (SOC) is a vital indicator in the battery management system (BMS) that monitors the charging and discharging operation of a battery pack. This paper proposes an electric circuit model for LiFePO4 battery by using particle filter (PF) method to determine the SOC estimation of batteries precisely. The LiFePO4 battery modelling is carried out using MATLAB software. Constant discharge test (CDT) is performed to measure the usable capacity of the battery and pulse discharge test (PDT) is used to determine the battery model parameters. Three parallel RC battery models have been chosen for this study to achieve high accuracy. The proposed PF implements recursive bayesian filter by Monte Carlo sampling which is robust for non-linear and/or non-Gaussian distributions. The accuracy of the developed electrical battery model is compared with experimental data for verification purpose. Then, the performance of the model is compared with experimental data and extended Kalman filter (EKF) method for validation purposed. A superior battery SOC estimator with higher accuracy compared to EKF method has been obtained.
Optimization of double stator PMSM with different slot number in inner and outer stators using genetic algorithm
Mohd Saufi Ahmad;
Dahaman Ishak;
Tiang Tow Leong;
Mohd Rezal Mohamed
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i2.pp726-735
This paper describes the performance enhancement of double stator permanent magnet synchronous machines (DS-PMSM) based on genetic algorithm optimization (GAO). Generally, throughout the development stage, an analytical calculation is implemented to build the initial model of the DS-PMSM since the analytical calculation can provide the initial parameters based on the types and materials used in the machine design. For further improvement, GAO might potentially be applied to provide the optimization technique in searching the optimal motor parameters iteratively and intelligently with specific objective functions. For this aim, a three-phase, DS-PMSM with different number of slots between the outer and inner stators is first designed by using analytical parameter estimation and then later optimized by GAO. The outer and inner stators have 12-slots and 9-slots respectively, while, the rotor carries 10 magnetic poles. Four main input motor parameters, i.e. outer stator slot opening, outer magnet pole arc, inner stator slot opening and inner magnet pole arc are varied and optimized to achieve the design objective functions, i.e. high output torque, low torque ripple, low cogging torque and low total harmonic distortion (THDv). The results from the optimized GAO are compared with the initial motor model and further validated by finite element method (FEM). The results show a good agreement between GAO and FEM. GAO has achieved very significant improvements in enhancing the machine performance.
Implementation of reduced induction machine fuzzy logic control based on dSPACE-1104 R&D controller board
Mohamed Moutchou;
Atman Jbari;
Younes Abouelmahjoub
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i2.pp1015-1023
In this paper, we present our contribution in Induction Machine control field. The control we designed is based on fuzzy logic theory, this choice is motivated by the fact that this technique of control is suitable for the control of systems characterized by its parameters uncertainties and variations. The proposed control is optimized by using a genetic algorithm for fuzzy logic controller (FLC) gains tuning and by a good choice of calculation techniques used in FLC. Three versions of IM fuzzy logic control were validated by simulation. After that in order to be able to experimentally implement this control on dSPACE-1104, we proposed an optimized and reduced structure of the control. The experimental results proof the effectiveness and the satisfied performance of the proposed IM fuzzy control.
A study on modeling of a piezoelectric motor
Youssef Baba;
Mostafa Bouzi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i2.pp695-702
n this paper, a study on modeling of a piezoelectric transducer type rotary traveling wave ultrasonic motor (USM) is presented. First a mathematical model and numerical simulation results are achieved. The model is based on the theory of piezoelectricity and physic theory. An experimental model is worked out and compared to the numerical model. The influence of the temperature on characteristics such as the rotational speed of the motor is considered. The speed of the USM is measured at temperature between 17°Cand 50°C. To develop suitable control strategies for the drive, a fuzzy model type Takagi-Sugeno is used. The unknown parameters of the output membership functions are determined by least square method. Experimental data are used to examine the validity of the fuzzy model. Comparison between experimental and calculated data of the fuzzy model indicates that the fuzzy model can well describe the nonlinear characteristics among the frequency of driving voltage and rotating speed.
A regenerative braking energy recuperation from elevator operation in building by active rectifier
An Thi Hoai Thu Anh;
Luong Huynh Duc
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i2.pp811-821
Elevators- means of vertical transportation to carry people and goods are an indispensable part in offices, high-rise buildings, hospitals, commercial areas, hotels, car-parks when blooming urbanization develops worldwide. However, the level of energy consumption in elevator operation is significant, so energy saving solutions have been outlined and applied in practice. With frequent braking phases, regenerative braking energy is wasted on braking resistors. Therefore, this paper proposes regenerative braking energy recuperation method for elevator operation in building by active rectifiers enabling the braking energy to be fed back into utility grid. Simulation results conducted by MATLAB with data collected from OCT5B building-RESCO new urban area, Ha noi, Vietnam have verified saving energy of using active rectifiers replacing diode rectifiers up to 33%.
Intelligent control of induction motor without speed sensor
M. Elgohary;
E. Gouda;
S. S. Eskander
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i2.pp715-725
This paper presents a proposed sensorless algorithm for induction motor(IM)speed control based on artificial neural networks (ANNs).The Indirect rotor field oriented (IRFO) technique is applied to control the motor. It is designed based on the proportional-integral (PI) controller. The particle swarm optimization (PSO) algorithm is used as a good solution for the problems associated with the design of the proportional-integral (PI) controller gains.The PSO is compared with the conventional methods. The proposed controller (PSO-PI) is then integrated with the artificial neural network(ANN) speed estimator. The MATLAB/Simulink is used for the simulation of the system. The obtained simulation results for the proposed technique are very close to the actual ones.
Adaptive fuzzy sliding mode controller design for PMLSM position control
Makhloufi, Khadidja;
Bousserhane, Ismail Khalil;
Zegnoun, Si Ahmed
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i2.pp674-684
We focus a modern methodology in this paper for adding the fuzzy logic control as well as sliding model control. This combination can enhance the MLS position control robustness and enhanced performance of it.In the start, for an application in an area to control the loops placement and position for the synchronous motor what has permanent magnetic linearity we tend to control the fuzzy sliding mode control. To resolve the chattering issues a designed controller is investigated and, in this way, steady state motion in sliding with higher accuracy is obtained. In this case, method of online tuning with the help of fuzzy logic is used in order to adjust the thickness of boundary layer and switching gains.For the suggested scheme technique, the outcomes of simulation suggest that with the classical SMC the accurate state and good dynamic performance is compared due to force chattering resistance, response by quick dynamic force and external disturbance elements and robustness against them.
Grid-connected control of PV-Wind hybrid energy system
Hakim Azoug;
Hocine Belmili;
Fekkak Bouazza
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i2.pp1228-1238
ABSTRACT Article history: Received Oct 14, 2020 Revised Mar 22, 2021 Accepted Apr 23, 2021 This paper presented a strategy for modeling, simulation and control of a hybrid grid connected power system which is in fact a rather complex system. In this work, we study how to use two renewable energies in an efficient manner without any disturbing of the main network. Our hybrid energy system (HES) is composed by two renewable energy sources, the photovoltaic source and wind source. It is better for these two systems to work at their maximum power in order to return the investment cost of the system. The proposed solution is to connect those generators to the electrical grid via the AC bus with trackers. Where the photovoltaic generator (PVG) is followed by a DC/DC boost converter, controlled by a perturb and observe (P&O) tracker, then followed by a three-phase voltage inverter (3-ph-VSI) which is controlled by the watt-var decoupled method. The wind system is based on permanent magnet synchronous machine (PMSM) which is used as a variable speed generator and directly connected to the turbine (without gearbox) followed by back-to-back converters. The grid side converter (GSC) allows us to control the DC bus voltage and unity power factor, while the machine side converter (MSC) ensures us to control the PMSM speed. Knowing that pitch angle control is not considered in our study. The MPPT control strategy, which is based on the optimum peak speed ratio (OTSR), is used to ensure the most energy efficiency despite variations in wind speed. The coupling of the two systems is done via the Point of Common Collecting (PCC). Finally, simulation results show the feasibility of our solution and the good performances of the proposed control strategy, applied for mediumsized HES in power generation. They also demonstrate that such system topology is very advantageous.