cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Power Electronics and Drive Systems (IJPEDS)
ISSN : -     EISSN : 20888694     DOI : -
Core Subject : Engineering,
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Arjuna Subject : -
Articles 60 Documents
Search results for , issue "Vol 12, No 3: September 2021" : 60 Documents clear
Primary frequency control of large-scale PV-connected multi-machine power system using battery energy storage system S. M. Imrat Rahman; Md. Rifat Hazari; Sumaiya Umme Hani; Bishwajit Banik Pathik; Mohammad Abdul Mannan; Asif Mahfuz; Mohammad Khurshed Alam; Md. Kamrul Hassan
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1862-1871

Abstract

Large-scale grid-tied photovoltaic (PV) station are increasing rapidly. However, this large penetration of PV system creates frequency fluctuation in the grid due to the intermittency of solar irradiance. Therefore, in this paper, a robust droop control mechanism of the battery energy storage system (BESS) is developed in order to damp the frequency fluctuation of the multi-machine grid system due to variable active power injected from the PV panel. The proposed droop control strategy incorporates frequency error signal and dead-band for effective minimization of frequency fluctuation. The BESS system is used to consume/inject an effective amount of active power based upon the frequency oscillation of the grid system. The simulation analysis is carried out using PSCAD/EMTDC software to prove the effectiveness of the proposed droop control-based BESS system. The simulation result implies that the proposed scheme can efficiently curtail the frequency oscillation.  
Development of a position tracking drive system for controlling PMSM motor using dSPACE 1104-based variable structure Tran Duc Chuyen; Nguyen Duc Dien
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1345-1357

Abstract

In industrial electric drive systems, it is common to find objects that need to solve the problem of angular position control, moving the object from one position to another asymptotically with no over-correction and guarantee. calculation of maximum fast impact. This is a multi-target optimization problem with many different solutions. This paper presents a method of constructing a PMSM motor position controller with a variable structure using dSPACE 1104 card. The system consists of a position control loop with a variable structure that is an outer loop and a speed control loop degree is the inner loop. In which, the speed adjustment loop uses adaptive law to compensate for uncertain functions and build a sliding mode observation to estimate load torque, friction and noise. The results of the simulation study were verified on Matlab-Simulink environment and experimented on dSPACE 1104 card to check the correctness of the built controller algorithm. The research results in the paper are the basis for the evaluation and setting up of control algorithms, design of electric drive systems in industry and the military.
Digital controller for active power filter based on P-Q theory under non-ideal main voltages Moh. Jauhari; Mohammad Nur; Kukuh Widarsono
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1556-1565

Abstract

This paper proposes a control strategy active power filter under non-ideal main voltages. The P-Q Theory is used to generate three-phase active power filter reference currents, but the P-Q Theory has a weakness when implemented under non ideal main voltages. This paper proposes a reference current generation method using modified P-Q Theory under non-ideal main voltages conditions. Before calculating the P-Q Theory, the non-ideal voltage at the source is normalized by using PLL to determine the phase angle which is then carried out by generating an ideal three-phase signal. The proposed method is simulated and implemented in a three-phase active power filter controller. The test results show the improvement in the performance of the P-Q Theory under non ideal main voltages with THD 7.21% to THD 3.29%.
H7 three phase transformerless inverter for photovoltaic grid-tied system with maximum power point operation Essam Hendawi; Sherif Zaid
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1853-1861

Abstract

One of the most important and common parts of the modern power systems is the grid-connected photovoltaic (PV) systems. Recently, these systems have gotten a big revolution due to the introduction of the transformerless inverters. It has the merits of small size, low cost, and high efficiency. However, transformerless inverters has a general safety problem related to the earth leakage current. Various researches were directed toward evolving their performance and diminishing the leakage current to the standard limits. This article proposes an application of the H7 controller to a PV powered grid-tied three phase transformerless inverter. The transformerless inverter is linked with the grid through a boost converter. The boost converter inductance is rearranged and divided to reduce the earth leakage current of the system. simulations are carried out for the proposed H7 PV grid-tied system and for a system that uses the conventional three phase inverter. The simulation results show that the H7 inverter provides lower leakage current, higher efficiency, and lower total harmonic distortion (THD) compared to the conventional three phase inverter.
Modeling and control of a hybrid DC/DC/AC converter to transfer power under different power management strategies Alizadeh Asl, Amin; Alizadeh Asl, Ramin
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1620-1631

Abstract

A hybrid DC/DC/AC converter connected to the grid without a three-phase transformer is controlled. The decentralized control method is applied to the hybrid DC-DC converter such that the maximum power of PV flows to the grid side. This controller must charge and discharge the battery at the proper time. It must also regulate DC-link voltage. An additional advantage of the proposed control is that the three-phase inverter does not need a separate controller such as PWM and SPWM. A simple technique is used for creating the desired phase shift in the three-phase inverter, which makes the active and reactive power of the inverter controllable. A new configuration is also proposed to transmit and manage the generation power of PV. In this scheme, the battery and fuel cell are employed as an auxiliary source to manage the generation power of PV. Finally, a real-time simulation is performed to verify the effectiveness of the proposed controller and system by considering the real characteristics of PV and FC.
Artificial bee colony algorithm applied to optimal power flow solution incorporating stochastic wind power Vian H. Ahgajan; Yasir G. Rashid; Firas Mohammed Tuaimah
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1890-1899

Abstract

This paper focuses on the artificial bee colony (ABC) algorithm, which is a nonlinear optimization problem. is proposed to find the optimal power flow (OPF). To solve this problem, we will apply the ABC algorithm to a power system incorporating wind power. The proposed approach is applied on a standard IEEE-30 system with wind farms located on different buses and with different penetration levels to show the impact of wind farms on the system in order to obtain the optimal settings of control variables of the OPF problem. Based on technical results obtained, the ABC algorithm is shown to achieve a lower cost and losses than the other methods applied, while incorporating wind power into the system, high performance would be gained.
A New Optimal DTC Switching Strategy for Open-End Windings Induction Machine using Dual Inverter Nabilah Aisyah; Maaspaliza Azri; Auzani Jidin; M. Z. Aihsan; MHN Talib
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1405-1412

Abstract

Since the early 1980s, fast torque dynamic control has been a subject of research in AC drives. To achieve superior torque dynamic control, two major techniques are used, namely Field Oriented Control (FOC) and Direct Torque Control (DTC), spurred on by rapid advances in embedded computing systems. Both approaches employ the space vector modulation (SVM) technique to perform the voltage source inverter into over modulation region for producing the fastest torque dynamic response. However, the motor current tends to increase beyond its limit (which can damage the power switches) during the torque dynamic condition, due to inappropriate flux level (i.e. at rated stator flux). Moreover, the torque dynamic response will be slower, particularly at high speed operations since the increase of stator flux will produce negative torque slopes more often. The proposed research aims to formulate an optimal switching modulator and produce the fastest torque dynamic response. In formulating the optimal switching modulator, the effects of selecting different voltage vectors on torque dynamic responses will be investigated. With greater number of voltage vectors offered in dual inverters, the identification of the most optimal voltage vectors for producing the fastest torque dynamic responses will be carried out based on the investigation. The main benefit of the proposed strategy is that it provides superior fast torque dynamic response which is the main requirements for many AC drive applications, e.g. traction drives, electric transportations and vehicles.
Voltage stability enhancement for large scale squirrel cage induction generator based wind turbine using STATCOM Abedalgany Athamneh; Bilal Al Majali
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1784-1794

Abstract

A stable operation of wind turbines connected to the grid is an essential requirement to ensure the reliability and stability of the power system. To achieve such operational objective, installing static synchronous compensator static synchronous compensator (STATCOM) as a main compensation device guarantees the voltage stability enhancement of the wind farm connected to distribution network at different operating scenarios. STATCOM either supplies or absorbs reactive power in order to ensure the voltage profile within the standard-margins and to avoid turbine tripping, accordingly. This paper present new study that investigates the most suitable-location to install STATCOM in a distribution system connected wind farm to maintain the voltage-levels within the stability margins. For a large-scale squirrel cage induction generator squirrel-cage induction generator (SCIG-based) wind turbine system, the impact of STATCOM installation was tested in different places and voltage-levels in the distribution system. The proposed method effectiveness in enhancing the voltage profile and balancing the reactive power is validated, the results were repeated for different scenarios of expected contingencies. The voltage profile, power flow, and reactive power balance of the distribution system are observed using MATLAB/Simulink software. 
Performance evaluation of GaN and Si based driver circuits for a SiC MOSFET power switch Martin J. Carra; Hernan Tacc; Jose Lipovetzky
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1293-1303

Abstract

Silicon Carbide (SiC), new power switches (PSW) require new driver circuits which can take advantage of their new capabilities. In this paper a novel Gallium Nitride (GaN) based gate driver is proposed as a solution to control SiC power switches. The proposed driver is implemented and is performance compared with its silicon (Si) counterparts on a hard switching environment. A thorough evaluation of the energy involved in the switching process is presented showing that the GaN based circuit exhibits similar output losses but reduces the control power needed to operate at a specified frequency.
Online diagnosis of supercapacitors using extended Kalman filter combined with PID corrector Zoubida Bououchma; Jalal Sabor
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1521-1534

Abstract

Supercapacitors are electrical energy storage devices with a high specific power density, a long cycle life and a good efficiency, which make them attractive alternative storage devices for various applications. However, supercapacitors are subject to a progressive degradation of their perfor-mance because of aging phenomenon. Therefore, it is very important to be able to estimate their State-of-Health during operation. Electrochemical Impedance Spectroscopy (EIS) is a very recog-nized technique to determine supercapacitors’ state-of-health. However, it requires the interrup-tion of system operation and thus cannot be performed in real time (online). In this paper, a new online identification method is proposed based on extended Kalman observer combined with a complementary PID corrector. The proposed method allows to accurately estimating supercapacitor resistance and capacitance, which are the main indicators of supercapacitor state-of-health. The new online identification method was applied for two voltage/current profiles using two different supercapacitors. The resistance/capacitance estimated by the new method and the conventional EKF were compared with those obtained by an experimental offline method. In comparison with conventional EKF, the capacitance obtained by the new method is significantly more accurate.

Filter by Year

2021 2021


Filter By Issues
All Issue Vol 16, No 4: December 2025 Vol 16, No 3: September 2025 Vol 16, No 2: June 2025 Vol 16, No 1: March 2025 Vol 15, No 4: December 2024 Vol 15, No 3: September 2024 Vol 15, No 2: June 2024 Vol 15, No 1: March 2024 Vol 14, No 4: December 2023 Vol 14, No 3: September 2023 Vol 14, No 2: June 2023 Vol 14, No 1: March 2023 Vol 13, No 4: December 2022 Vol 13, No 3: September 2022 Vol 13, No 2: June 2022 Vol 13, No 1: March 2022 Vol 12, No 4: December 2021 Vol 12, No 3: September 2021 Vol 12, No 2: June 2021 Vol 12, No 1: March 2021 Vol 11, No 4: December 2020 Vol 11, No 3: September 2020 Vol 11, No 2: June 2020 Vol 11, No 1: March 2020 Vol 10, No 4: December 2019 Vol 10, No 3: September 2019 Vol 10, No 2: June 2019 Vol 10, No 1: March 2019 Vol 9, No 4: December 2018 Vol 9, No 3: September 2018 Vol 9, No 2: June 2018 Vol 9, No 1: March 2018 Vol 8, No 4: December 2017 Vol 8, No 3: September 2017 Vol 8, No 2: June 2017 Vol 8, No 1: March 2017 Vol 7, No 4: December 2016 Vol 7, No 3: September 2016 Vol 7, No 2: June 2016 Vol 7, No 1: March 2016 Vol 6, No 4: December 2015 Vol 6, No 3: September 2015 Vol 6, No 2: June 2015 Vol 6, No 1: March 2015 Vol 5, No 4: 2015 Vol 5, No 3: 2015 Vol 5, No 2: 2014 Vol 5, No 1: 2014 Vol 4, No 4: December 2014 Vol 4, No 3: September 2014 Vol 4, No 2: June 2014 Vol 4, No 1: March 2014 Vol 3, No 4: December 2013 Vol 3, No 3: September 2013 Vol 3, No 2: June 2013 Vol 3, No 1: March 2013 Vol 2, No 4: December 2012 Vol 2, No 3: September 2012 Vol 2, No 2: June 2012 Vol 2, No 1: March 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue