International Journal of Power Electronics and Drive Systems (IJPEDS)
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Articles
17 Documents
Search results for
, issue
"Vol 5, No 3: 2015"
:
17 Documents
clear
Implementation of PI Controller for 4ф Srm Drive Using TMS320F28335
Mekala N;
Muniraj C
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 5, No 3: 2015
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v5.i3.pp283-292
This paper presents the experimental investigation of DSP based 4Ф Switched Reluctance Motor (SRM) Drive. SRM is a doubly-salient, singly-excited machine and having very simple construction, has a low inertia and allows an extremely high-speed operation. The control system of SRM is highly complex due to non linear nature. In such a system for implementing control algorithm needs high speed processor. In this work TMS320F28335 DSP processor is used to implement the inner loop PI current controller and outer loop PI speed controller. The TMS320F28335 is highly integrated, high performance solution for challenging control applications. The various experimental tests are carried out in 1 HP 4Ф SRM. The experimental results are reported in order to verify the steady state, transient and robustness performance of the controller.
Improved Torque Control Performance in Direct Torque Control using Optimal Switching Vectors
Muhd Zharif Rifqi Zuber Ahmadi;
Auzani Jidin;
Maaspaliza Azri;
Khairi Rahim;
Tole Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 5, No 3: 2015
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v5.i3.pp441-452
This paper presents the significant improvement of Direct Torque Control (DTC) of 3-phases induction machine using a Cascaded H-Bidge Multilevel Inverter (CHMI). The largest torque ripple and variable switching frequency are known as the major problem founded in DTC of induction motor. As a result, it can diminish the performance induction motor control. Therefore, the conventional 2-level inverter has been replaced with CHMI the in order to increase the performance of the motor either in dynamic or steady-state condition. By using the multilevel inverter, it can produce a more selection of the voltage vectors. Besides that, it can minimize the torque ripple output as well as increase the efficiency by reducing the switching frequency of the inverter. The simulation model of the proposed method has been developed and tested by using Matlab software. Its improvements were also verified via experimental results.
FPGA Based V/f Control of Three Phase Induction Motor Drives Integrating Super-Lift Luo Converter
Elangovan P;
Nalin Kant Mohanty
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 5, No 3: 2015
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v5.i3.pp393-403
The significance of Elementary Positive Output Super-Lift Luo Converter (EPOSLLC) in constant Voltage/Hertz (V/f) controlled Induction Motor (IM) drive is presented. The traditional IM drive which integrates phase controlled rectifier or boost converter in the facade end upshot tribulations like DC link fluctuations and deprived DC link voltage level. To overcome the problem, the conventional DC-DC converter is replaced with Proportional plus Integral (PI) controlled EPOSLLC in the front end of IM drive that produce the DC link voltage in geometric progression. The Voltage Source Inverter (VSI) of the suggested system renders both open loop and closed loop V/f control scheme for IM by feedback regulated Sinusoidal Pulse Width Modulation (SPWM) technique. Simulation and experimental works are conceded and results presented to demonstrate the viability of the proposed approach. Simulation is carried out using MATLAB /SIMULINK software and the experimental setup is built with Field Programmable Gate Array (FPGA) Spartan-6 processor. The anticipated EPOSLLC is found fit for V/f controlled IM drives considering the DC link Voltage, Speed response of IM and Total Harmonic Distorion (THD) in IM current.
Analysis of Variable Speed PFC Chopper Fed BLDC Motor Drive
A Jeya Selvan Renius;
K Vinoth Kumar
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 5, No 3: 2015
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v5.i3.pp326-335
This paper provides the detailed analysis of the DC-DC chopper fed Brushless DC motor drive used for low-power applications. The various methods used to improve the power quality at the ac mains with lesser number of components are discussed. The most effective method of power quality improvement is also simulated using MATLAB Simulink. Improved method of speed control by controlling the dc link voltage of Voltage Source Inverter is also discussed with reduced switching losses. The continuous and discontinuous modes of operation of the converters are also discussed based on the improvement in power quality. The performance of the most effective solution is simulated in MATLAB Simulink environment and the obtained results are presented.
Experimental Evaluation of Torque Performance of Voltage and Current Models using Measured Torque for Induction Motor Drives
Ibrahim M. Alsofyani;
Tole Sutikno;
Yahya A. Alamri;
Nik Rumzi Nik Idris;
Norjulia Mohamad Nordin;
Aree Wangsupphaphol
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 5, No 3: 2015
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v5.i3.pp433-440
In this paper, two kinds of observers are proposed to investigate torque estimation. The first one is based on a voltage model represented with a low-pass filter (LPF); which is normally used as a replacement for a pure integrator to avoid integration drift problem due to dc offset or measurement error. The second estimator used is an extended Kalman filter (EKF) as a current model, which puts into account all noise problems. Both estimation algorithms are investigated during the steady and transient states, tested under light load, and then compared with the measured mechanical torque. In all conditions, the torque estimation error for EKF has remained within a narrow error band and yielded minimum torque ripples, which motivate the use of the EKF estimation algorithm in high performance control drives of IMs for achieving high dynamic performance.
A Tactical Chaos based PWM Technique for Distortion Restraint and Power Spectrum Shaping in Induction Motor Drives
V. Mohan;
N. Stalin;
S. Jeevananthan
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 5, No 3: 2015
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v5.i3.pp383-392
The pulse width modulated voltage source inverters (PWM-VSI) dominate in the modern industrial environment. The conventional PWM methods are designed to have higher fundamental voltage, easy filtering and reduced total harmonic distortion (THD). There are number of clustered harmonics around the multiples of switching frequency in the output of conventional sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) inverters. This is due to their fixed switching frequency while the variable switching frequency makes the filtering very complex. Random carrier PWM (RCPWM) methods are the host of PWM methods, which use randomized carrier frequency and result in a harmonic profile with well distributed harmonic power (no harmonic possesses significant magnitude and hence no filtering is required). This paper proposes a chaos-based PWM (CPWM) strategy, which utilizes a chaotically changing switching frequency to spread the harmonics continuously to a wideband and to reduce the peak harmonics to a great extent. This can be an effective way to suppress the current harmonics and torque ripple in induction motor drives. The proposed CPWM scheme is simulated using MATLAB / SIMULINK software and implemented in three phase voltage source inverter (VSI) using field programmable gate array (FPGA).
Performance Analysis of a DTC and SVM Based Field-Orientation Control Induction Motor Drive
Md. Rashedul Islam;
Md. Maruful Islam;
Md. Kamal Hossain;
Pintu Kumar Sadhu
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 5, No 3: 2015
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v5.i3.pp336-343
This study presents a performance analysis of two most popular control strategies for Induction Motor (IM) drives: direct torque control (DTC) and space vector modulation (SVM) strategies. The performance analysis is done by applying field-orientation control (FOC) technique because of its good dynamic response. The theoretical principle, simulation results are discussed to study the dynamic performances of the drive system for individual control strategies using actual parameters of induction motor. A closed loop PI controller scheme has been used. The main purpose of this study is to minimize ripple in torque response curve and to achieve quick speed response as well as to investigate the condition for optimum performance of induction motor drive. Depending on the simulation results this study also presents a detailed comparison between direct torque control and space vector modulation based field-orientation control method for the induction motor drive.