International Journal of Power Electronics and Drive Systems (IJPEDS)
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Articles
45 Documents
Search results for
, issue
"Vol 8, No 2: June 2017"
:
45 Documents
clear
Multiple Inverters Operated in Parallel for Proportional Load Sharing in Microgrid
Chethan Raj D;
D N Gaonkar
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (643.014 KB)
|
DOI: 10.11591/ijpeds.v8.i2.pp654-666
The new energy source utilization and development, gradual rise of distributed power grid miniaturization, intelligence, control has become a trend. In order to make microgrid reliable and efficiently run, control technology of microgrid has become a top priority and an inverter as microgrid basic unit, its control has become the most important part in microgrid. In this paper, three inverters are operated in parallel using an P-V/Q-F droop control is investigated. Mathematical model of three phase inverter with LC filter is derived, which is based on the voltage and current dual control loop. Parallel control strategy based on P-V/Q-F droop control, does not require a real time communications between the inverters and more suitable for microgrid applications. To verify the feasibility and validity of the droop control scheme, simulation is done in Matlab/Simulink and results indicate droop control has significant effect on power sharing and balancing the voltage magnitude, frequency.
Topological Comparison of Dual-Input DC-DC Converters
A. Lavanya;
K. Vijaya Kumar;
J. Divya Navamani
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (469.496 KB)
|
DOI: 10.11591/ijpeds.v8.i2.pp804-811
Dual input dc-dc converters have two input voltage sources or one input source and an energy storage system like ultra capacitor, PV, battery, super capacitors and a single output load. In order to process the power in hybrid energy systems using reduced part count, researchers have proposed several multi-input dc-dc power converter topologies to transfer power from different input voltage sources to the output. This paper compares non-isolated dual-input converter topologies topologically ,based on the components count, various fields of application and different modes of operation for hybrid systems mainly used in electric vehicles and renewable energy systems composed of energy storage systems (ESSs) with different voltage-current characteristics. Dual input dc-dc converter topologies considered in this paper are investigated using MATLAB and PSIM software and output voltage and inductor current waveforms are shown.
A Review: Design Variables Optimization and Control Strategies of a Linear Switched Reluctance Actuator for High Precision Applications
Yeo Chin Kiat;
Mariam Md Ghazaly;
Shin Horng Chong;
Irma Wani Jamaludin
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (486.811 KB)
|
DOI: 10.11591/ijpeds.v8.i2.pp963-978
This paper presents the review of design variables optimization and control strategies of a Linear Switched Reluctance Actuator (LSRA). The introduction of various type of linear electromagnetic actuators (LEA) are compared and the advantages of LSRA over other LEA are discussed together with the type of actuator configurations and topologies. The SRA provides an overall efficiency similar to induction actuator of the similar rating, subsequently the friction and windage losses are comparable but force density is better. LSRA has the advantage of low cost, simple construction and high reliability compare to the actuator with permanent magnet. However, LSRA also has some obvious defects which will influence the performance of the actuator such as ripples and acoustic noise which are caused by the highly nonlinear characteristics of the actuator. By researching the design variables of the actuator, the influences of those design variables are introduced and the detail comparisons are analyzed in this paper. In addition, this paper also reviews on the control strategies in order to overcome the weaknesses of LSRA.
Periodic Perturbation Method for Controlling Chaos for a Positive Output DC-DC Luo Converter
P. Balamurugan;
A. Kavitha;
P. Sanjeevikumar;
J.L. Febin Daya;
Tole Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v8.i2.pp775-784
A simple, non-feedback method of controlling chaos is implemented for a DC-DC converter. The weak periodic perturbation (WPP) is the control technique applied to stabilize an unstable orbit in a current-mode controlled Positive Output Luo (POL) DC-DC converter operating in a chaotic regime. With WPP, the operation of the converter is limited to stable period-1 orbit that exists in the original chaotic attractor. The proposed control strategy is implemented using simulations and the results are verified with hardware setup. The experimental results of the converter with WPP control are presented which shows the effectiveness of the control strategy.
Analysis and Impact of D-STATCOM, Static Var Compensator, Fuzzy Based SVC Controller on the Stability of a Wind Farm
Kaoutar Rabyi;
Hassane Mahmoudi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v8.i2.pp935-944
In recent years, applications of facts systems have been developed for the compensation of active and reactive power. Facts systems are electronics devices that are connected to the wind farm. This paper presents the impacts of some of these devices on the stability of a wind farm, especially D-STATCOM, Static Var Compensator and Fuzzy SVC controller. First, a presentation of D-STATCOM, SVC, then fuzzy logic controller. In simulation study, the D-STATCOM ensures the stability of the voltage and current at the point of connection with the electrical grid. Finally, Comparing the SVC to the F-SVC simulations, we notice that the F-SVC is more performed than SVC for the compensation of the active and reactive power.
A Constant Switching Frequency DTC for PMSM Using Low Switching Losses SVM–An Experimental Result
K. Chikh;
A. Saad;
M. Khafallah;
D. Yousfi;
F.Z. Tahiri;
M. Hasoun
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v8.i2.pp558-583
A Constant Switching Frequency Direct Torque Control (CSF-DTC) with low switching losses Space Vector modulation (SVM) for Permanent Magnet Synchronous Motor (PMSM) drive is proposed in this work. The CSF-DTC combines Field Oriented Control (FOC) and basic DTC advantages. Indeed, the proposed control strategy improves the basic DTC performances, which features low flux and torque ripples as well as a fixed switching frequency. The improved DTC ensures also a fast and robust flux and torque responses by using Integral and Proportional (IP) controllers which guaranteed a good disturbance rejection.On the other hand, a symmetrical SVM technique with low switching losses in the PWM inverter is used in order to generate the desired stator voltage vector needed to control the stator flux and the motor torque. Simulation and experimental results are presentedin this paper.These results demonstrate well the performance of the basic and proposed DTC and they show the effectiveness of the constant switching frequency direct torque control.
Power Factor Correction with Current Controlled Buck Converter for BLDC Motor Drive
P. Sarala;
S. F. Kodad;
B. Sarvesh
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v8.i2.pp730-738
Brushless DC motor is a synchronous machine that makes use of electronic commutation instead of mechanical commutator. Brushless DC motors makes use of inverter encompassing static switches for its operation. A simple bridge converter when used for BLDC drive as front end converter makes input source power factor to get reduced which is unacceptable in the power system. To avoid the distortions in the source voltage and source currents, Buck converter which was used as power factor correction (PFC) converter in this paper to improve the power factor. Presence of power electronic converters deteriorates system power factor effecting overall system performance. This paper presents buck converter for power factor correction in brushless DC motor drive system. Buck converter is operated with current control strategy rather to conventional voltage follower control. Simulation model was obtained using MATLAB/SIMULINK software and the brushless DC motor performance characteristics were shown for conditions with different DC link voltages and step variation in DC link voltage. Total harmonic distortion in source current was also presented.
Effects of Switching Frequency Modulation on Input Power Quality of Boost Power Factor Correction Converter
Deniss Stepins;
Jin Huang
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v8.i2.pp882-899
Switching frequency modulation (SFM) as spread-spectrum technique has been used for electromagnetic interference reduction in switching power converters. In this paper, a switching-frequency-modulated boost power factor correction (PFC) converter operating in continuous conduction mode is analysed in detail in terms of its input power quality. Initially, the effect of SFM on the input current total harmonic distortion, power factor and low-frequency harmonics of the PFC converter are studied by using computer simulations. Some advices on choosing parameters of SFM are given. Then the theoretical results are verified experimentally. It is shown that, from a power quality point of view, SFM can be harmful (it can significantly worsen the power quality of the PFC converter) or almost harmless. The results depend on how properly the modulation parameters are selected.
Buck Converter Control for Lead Acid Battery Charger using Peak Current Mode
Asep Nugroho;
Estiko Rijanto;
Latif Rozaqi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v8.i2.pp686-694
DC-DC buck converters are used for battery chargers in many applications including renewable energy sources, inverters, electric vehicles and robots. In this paper a buck converter was built and its controller was developed using peak current control mode for current loop and phase lag for voltage loop. This paper proposes a formulation of plant disturbance due to load variation to obtain a nominal model based on small signal approach. The controller was derived analytically based on the nominal model. Experiment results show that the buck control system functions well in regulating the output voltage. During the start up without any load it can reduce input voltage from 300 V to output voltage of 133.9 V in 19.3 ms. The developed controller can maintain the output voltage under load variation from no load to sudden load of 0.26 A. When it was implemented to charge a lead acid battery string, constant current of 3.36 A was charged in the first 173 minutes followed by constant voltage of 134.7 V until the end of charging at time 483 minutes. Thus, the developed control system of lead acid battery charger works well.
Performance Analysis of Modified SVPWM Strategies for Three Phase Cascaded Multi-level Inverter fed Induction Motor Drive
Ravikumar Bhukya;
P. Satish Kumar
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v8.i2.pp835-843
This paper presents new modified space vector pulse width modulation techniques (Phase disposition-Space vector pulse width modulation, Alternative Phase Opposition disposition- Space vector pulse width modulation and Phase Opposition disposition-Space vector pulse width modulation) are analyzed for three-phase cascaded multi-level inverter fed induction motor from the point of view of the Phase voltages, line voltage, stator current,speed,torque and Total harmonic distortion.in the proposed modified technique the reference signals are generated by adding offset voltage to the reference phase voltages.This modified SVPWM technique does not involve region indentification,sector identification for switching vector determination as are required in the conventional multi level SVPWM technique,it is also reduces the computation time compared to the conventional space vector PWM technique.The necessary calculations for generation of new modified SVPWM for the modulation strategies have presented in detail. It is observed that the modified SVPWM modulation ensures excellent, close to optimized pulse distribution results and THD is compared to for five-level, seven-level, nine-level and eleven-level Cascaded H-Bride Multi-level Inverter fed to Induction motor. Theoretical investigations were confirmed by the digital simulations using MATLAB/SIMULINK software.