cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Reconfigurable and Embedded Systems (IJRES)
ISSN : 20894864     EISSN : 27222608     DOI : -
Core Subject : Economy,
The centre of gravity of the computer industry is now moving from personal computing into embedded computing with the advent of VLSI system level integration and reconfigurable core in system-on-chip (SoC). Reconfigurable and Embedded systems are increasingly becoming a key technological component of all kinds of complex technical systems, ranging from audio-video-equipment, telephones, vehicles, toys, aircraft, medical diagnostics, pacemakers, climate control systems, manufacturing systems, intelligent power systems, security systems, to weapons etc. The aim of IJRES is to provide a vehicle for academics, industrial professionals, educators and policy makers working in the field to contribute and disseminate innovative and important new work on reconfigurable and embedded systems. The scope of the IJRES addresses the state of the art of all aspects of reconfigurable and embedded computing systems with emphasis on algorithms, circuits, systems, models, compilers, architectures, tools, design methodologies, test and applications.
Arjuna Subject : -
Articles 12 Documents
Search results for , issue "Vol 9, No 3: November 2020" : 12 Documents clear
Effect of integrated power and clock networks on combinational circuits Rajeshwari Bhat; Mohammad Rashid Ansari; Ruqaiya Khanam
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 9, No 3: November 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijres.v9.i3.pp242-248

Abstract

Reduction of power consumption is necessary in a system on chip. To achieve this, power and clock networks can be integrated. This leads to a significant reduction in power consumption in a circuit. This paper explores the effect of such a network on various combinational circuits and compares the power consumption of these circuits with conventional combinational circuits. The combinational circuits which are powered by the proposed circuit consume lesser power as compared to conventional combinational circuits.
Efficient adaptation of the Karatsuba algorithm for implementing on FPGA very large scale multipliers for cryptographic algorithms Walder Andre
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 9, No 3: November 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijres.v9.i3.pp235-241

Abstract

Here, we present a modified version of the Karatsuba algorithm to facilitate the FPGA-based implementation of three signed multipliers: 32-bit × 32-bit, 128-bit x 128-bit, and 512-bit × 512-bit. We also implement the conventional 32-bit × 32-bit multiplier for comparative purposes. The Karatsuba algorithm is preferable for multiplications with very large operands such as 64-bit × 64-bit, 128-bit × 128-bit, 256-bit × 256-bit, 512-bit × 512-bit multipliers and up. Experimental results show that the Karatsuba multiplier uses less hardware in the FPGA compared to the conventional multiplier. The Xilinx xc7k325tfbg900 FPGA using the Genesis 2 development board is used to implement the proposed scheme. The results obtained are promising for applications that require rapid implementation and reconfiguration of cryptographic algorithms. Here, we present a modified version of the Karatsuba algorithm to facilitate the FPGA-based implementation of three signed multipliers: 32-bit × 32-bit, 128-bit x 128-bit, and 512-bit × 512-bit. We also implement the conventional 32-bit × 32-bit multiplier for comparative purposes. The Karatsuba algorithm is preferable for multiplications with very large operands such as 64-bit × 64-bit, 128-bit × 128-bit, 256-bit × 256-bit, 512-bit × 512-bit multipliers and up. Experimental results show that the Karatsuba multiplier uses less hardware in the FPGA compared to the conventional multiplier. The Xilinx xc7k325tfbg900 FPGA using the Genesis 2 development board is used to implement the proposed scheme. The results obtained are promising for applications that require rapid implementation and reconfiguration of cryptographic algorithms.

Page 2 of 2 | Total Record : 12