cover
Contact Name
Triwiyanto
Contact Email
triwiyanto123@gmail.com
Phone
+628155126883
Journal Mail Official
editorial.jeeemi@gmail.com
Editorial Address
Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya Jl. Pucang Jajar Timur No. 10, Surabaya, Indonesia
Location
Kota surabaya,
Jawa timur
INDONESIA
Journal of Electronics, Electromedical Engineering, and Medical Informatics
ISSN : -     EISSN : 26568632     DOI : https://doi.org/10.35882/jeeemi
The Journal of Electronics, Electromedical Engineering, and Medical Informatics (JEEEMI) is a peer-reviewed open-access journal. The journal invites scientists and engineers throughout the world to exchange and disseminate theoretical and practice-oriented topics which covers three (3) majors areas of research that includes 1) Electronics, 2) Biomedical Engineering, and 3)Medical Informatics (emphasize on hardware and software design). Submitted papers must be written in English for an initial review stage by editors and further review process by a minimum of two reviewers.
Articles 7 Documents
Search results for , issue "Vol 5 No 1 (2023): January" : 7 Documents clear
Internet of (Healthcare) Things Based Monitoring for COVID-19+ Quarantine/ Isolation Subjects Using Biomedical Sensors, A Lesson from the Recent Pandemic, and an Approach to the Future. Azarudeen Mohamed Arif; Abubaker M. Hamad; Montasir Mohamed Mansour
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 1 (2023): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v5i1.267

Abstract

The COVID-19+ pandemic has brought into keen focus the necessity to utilize and enforce our digital infrastructure for remote patient monitoring based on IoT (Internet of Things) technology since quarantines and isolations are playing a vital role in containing its spread. As of date, many viral tests and vaccines are in use while few drugs are in experimental stages, but there is always need for possibilities for increasing reliability of disease detection and monitoring at both levels of individual and society, and such aim can be supported by wearable biomedical sensors devices. Previously, wearable devices have been used to monitor physiological parameters during daily human living activities. Still, the investment of such technologies toward predicting infection by COVID-19+ remains essential to alert potential patients and start sequence of health systems intervention. It was found that wearable devices increased patients’ compliance to healthcare advice. Thus, in this perspective review, we have proposed an IoT based system to monitor the quarantine / isolation subjects during COVID-19+ and similar pandemic and quarantine observation. This wearable prototype, associated with the bundled mobile app, act to reports and tracks/monitoring the quarantined individuals. IoT based quarantine/isolation monitoring system is contact-free that could benefit especially healthcare professionals to lower the risk of exposure to infective pathogens. Current manuscript describes clinically relevant physiological human parameters that can be measured by wearable biomedical sensors and monitored based on IoT technology and their role in health tracking, stability, and recovery of COVID-19++ve individuals and front-line health workers. This paper aimed at initiation of an approach among front-line healthcare workers as well as biomedical engineers for developing digital healthcare platforms of monitoring and managing such pandemic.
Power Added Efficiency Enhancement in a 2.4 GHz Class E Power Amplifier in 0.13µm CMOS Technology Hemad Heidari Jobaneh
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 1 (2023): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v5i1.273

Abstract

Power-Added-Efficiency (PAE) is one of the most significant factors by which the performance of a Power Amplifier (PA) can be scrutinized. A new approach to increase PAE is proposed in this paper. Plus, the trade-off between increasing VDD for more output power and more PAE is examined. In addition, new and precise calculations for both output voltage and output power are achieved. Furthermore, the concept of using an equivalent circuit of a transformer is described to justify the new way to increase PAE. The designed Power Amplifier (PA) operates at 2.4GHz. The simulation is performed by Advanced Design System (ADS) and MATLAB. Plus, the TSMC 0.13 µm CMOS process is utilized to fulfil the procedure. The class E PA is designed to gain two different objectives, including more output power and more PAE. With VDD= 1.18 V the output power is 19.52 dBm and PAE is 68.5 %. Ultimately, with VDD=4.4 V the output power is 31.24 dBm and PAE is 62.7 %.
The Performance Analysis of the Infrared Photodiode Sensor to Infusion Set on Infusion Device Analyzer Machine Anisa Rahma Astuti; Syaifudin; Triana Rahmawati; Khongdet Phasinam
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 1 (2023): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v5i1.274

Abstract

Infusion pumps and syringe pumps are devices used to administer liquid medicines to patients. The frequency of using the infusion pump and syringe pump in the long term will affect the accuracy of the tool. Accuracy is very important in dosing to patients in critical conditions who require intensive care to prevent fluid balance in the body. Therefore, periodic calibration of medical devices is required at least once a year. Calibration according to Permenkes No. 54 of 2015 is a calibration activity to determine the correctness of a tool. The purpose of this research is to make an Infusion Device Analyzer (IDA) with a TFT LCD displaying a graph of flowrate parameters. The method used is to analyze the flowrate value using an infrared photodiode sensor and can see the stability of the flowrate graph on a 7-inch TFT LCD from the use of 2 brands of syringes and an infusion set. The results obtained can be stored on the SD Card. The measurement results show that the error in the performance of the syringe and infusion pump read by the module on Channel 1 with the Terumo syringe is 0.15 (10 ml/h), 0.1 (50ml/h) and 0.03 (100ml/h). . On Channel 2 it is 0.02(10ml/hour), 0.03 (50ml/hour) and 0.04(100ml/hour). When using the B-Braun Channel 1 syringe, 0.25 (10ml/h), 009(50ml/h) and 0.08(100ml/h) are used. And on Channel 2 it is 0.62 (10ml/h), 0.15 (50ml/h), and 7.3 (100ml/h). When using the Terumo Channel 1 brand infusion set at 0.05 (10ml/h), 0.3(50ml/h), and 0.04(100ml/h). On Channel 2 it is 0.14(10ml/hour), 0.02 (50ml/hour) and 0.18 (100 ml/hour). When using the B-Braun Channel 1 Infusion Set, it is 0.07(10ml/h), 0.02(50 ml/h), and 0.03 (100ml/h). Then on Channel 2 0.07 (10ml/hour), 0.02(50 ml/hour), and 0.1(100ml/hour). The conclusion of this study is that the use of 2 different infusion sets greatly affects the readings, other than that other factors can also affect the readings including the position of the hose and the placement of sensors on each channel. From the manufacture of this tool, it is expected that users can be more efficient in using a 2-channel Infusion Device analyzer which can be run at the same time.
Performance Analysis of Twelve Lead ECG Based on Delivery Distance Using Bluetooth Communication Azel Pralingga Mukti; Lusiana Lusiana; Dyah Titisari; Satheeshkumar Palanisamy
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 1 (2023): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v5i1.275

Abstract

Based on data from Basic Health Research (Riskesdas) in 2018, the incidence of heart and blood vessel disease is increasing from year to year. At least 15 out of 1000 people or about 2,784,064 individuals in Indonesia suffer from heart disease. Therefore, cardiovascular health care can make a better diagnosis through continuous monitoring. The purpose of this study was to develop a 12-lead circuit, a lead selector (Wilson Central Terminal), an instrumentation booster, an analog filter (Notch Filter 50Hz), Arduino UNO, a Bluetooth module, and Delphi7 application to display electrocardiograph signals. The results show that the Bluetooth module cannot send a signal at a distance of 20 meters if there is no obstacle, cannot send a signal at a distance of 10 meters if there is an obstacle in the form of a wall, and cannot send a signal at a distance of 16 meters if there is an obstacle in the form of wood (doors).
Eight Channel Temperature Monitoring using Thermocouple Sensors (type K) Based on Internet of Thing using ThinkSpeak Platform Candra Prastyadi; Bedjo utomo; Her Gumiwang Ariswati; Dyah Titisari; Sumber Sumber; A. Senthil Kumar
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 1 (2023): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v5i1.276

Abstract

A laboratory incubator is a device used to incubate a breed. a very important condition in the procedure Incubator is the optimal temperature conditions for microorganisms to grow. The incubator is equipped with a temperature controller so that the temperature can be adjusted according to the breed to be raised. Incubators use an oven like dry heat. The purpose of this study was to test and analyze the accuracy of the thermocouple sensor with incubator media in a laboratory incubator calibrator. The main design method uses the 8 MAX 6675 module, the 8 K type Thermocouple module, Arduino Mega, and SD Card data storage. Temperature measurements were measured with a Type K thermocouple sensor. The thermocouple sensor has 8 channels which function to measure the temperature at each camber point of the incubator. The temperature will be stored on the SD card for data analysis and the data can be processed in graphical form. Benchmarking is done using a temperature data logger. This is done so that the design results are below the standard comparison tool. The measurement results on the module compared to the comparison tool obtained the largest error value, namely 3.98%, namely on channel T6 at 35°C with ordinary incubator media and the smallest error on ordinary incubator media at point T6 at 37°C, which is 0.06 % and at 35 C the temperature of the incubator fan has the largest error of 2.98% and the smallest error of 0.86%. the module can perform well by testing the comparison tool at every point
Analysis of Stability and Accuracy of Gas Flow in High Flow Nasal Canule for COVID-19 Patients Muhammad Ridha Mak'ruf; Novella Lasdrei Anna Leediman; Andjar Pudji; Erwin L. Rimban
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 1 (2023): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v5i1.277

Abstract

In December 2019, the world was introduced to a new coronavirus, severe acute respiratory syndrome (COVID-19).The primary strategy for COVID-19 patients is supportive care, using high-flow nasal oxygen therapy (HFNC) reported to be effective in improving oxygenation. Stability is the ability of a medical device to maintain its performance [1]. Medical equipment must have the stability necessary to maintain critical performance conditions over a period of time. Accuracy is the closeness of agreement between the value of a measuring quantity, and the value of the actual quantity of the measuring quantity[2].The purpose of this study is to ensure that the readings of the HFNC device are accurate and stable so that it is safe and comfortable when used on patients. The development of the equipment that will be used by the author adds graphs to the TFT LCD to help monitor stable data in real time so that officers can monitor the flow and fraction of oxygen in the device to be stable. This study uses Arduino Nano while the sensor used is the GFS131 sensor, then the results are displayed on the Nextion TFT LCD. The test is carried out with comparing the setting value of the HFNC tool that appears on the TFT LCD with a gas flow analyzer with a measurement range of 20 LPM to 60 LPM 5 times at each point. Based on measurements on the gas flow analyzer, the HFNC module has an average error (error (%)) of6.40%. Average uncertainty (Ua) 0.05. Conclusion from these results that the calibrator module has a relative error (error value) that is still within the allowable tolerance limit, which is ±10%, the tool is precise because of the small uncertainty and good stability of the stability test carried out within a certain time.
Effect of Muscle Fatigue on EMG Signal and Maximum Heart Rate for Pre and Post Physical Activity Arifah Putri Caesaria; Endro Yulianto; Sari Luthfiyah; Triwiyanto Triwiyanto; Achmad Rizal
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 1 (2023): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v5i1.278

Abstract

Sport is a physical activity that can optimize body development through muscle movement. Physical activity without rest with strong and prolonged muscle contractions results in muscle fatigue. Muscle fatigue that occurs causes a decrease in the work efficiency of muscles. Electrocardiography (ECG) is a recording of the heart's electrical activity on the body's surface. EMG is a technique for measuring electrical activity in muscles. This study aims to detect the effect of muscle fatigue on cardiac signals by monitoring ECG and EMG signals. This research method uses the Maximum Heart Rate with a research design of one group pre-test-post-test. The independent variable is the ECG signal when doing plank activities, while the dependent variable is the result of monitoring the ECG signal. To get the Maximum Heart Rate results, respondents use the Karnoven formula and perform the T-test. Test results show a significant value (pValue <0.05) in pre-exercise and post-exercise. When the respondent experiences muscle fatigue, it shows the effect of changes in the shape of the ECG signal which is marked by the presence of movement artifact noise. It concluded that the tools in this study can be used properly. This study has limitations including noise in the AD8232 module circuit and the display on telemetry where the width of the box cannot be adjusted according to the ECG paper.is It recommended for further research to use components with better quality and replace the display using the Delphi interface.

Page 1 of 1 | Total Record : 7