cover
Contact Name
Ari Pramudyantoro
Contact Email
ajche.ft@ugm.ac.id
Phone
+62274555320
Journal Mail Official
ajche.ft@ugm.ac.id
Editorial Address
Jln. Grafika No. 2 Kampus UGM Yogyakarta Indonesia 55281
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
ASEAN Journal of Chemical Engineering
ISSN : 26555409     EISSN : 26555409     DOI : https://doi.org/10.22146/ajche.52004
The ASEAN Journal of Chemical Engineering publishes papers on Chemical Engineering, specifically but not limited to the areas of thermodynamics, reaction kinetics, transport phenomena, process control, environment, energy, biotechnology, corrosion, separation science, powder technology, materials science, and chemical engineering education
Articles 13 Documents
Search results for , issue "Vol 21, No 1 (2021)" : 13 Documents clear
The Effect of Reaction Time and Temperature on the Synthesis of Methyl Ester Sulfonate Surfactant from Palm Oil as a Feedstock using Microwave-Assisted Heating Lailatul Qadariyah; Sahiba Sahila; Mahfud Mahfud
ASEAN Journal of Chemical Engineering Vol 21, No 1 (2021)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ajche.63786

Abstract

Methyl ester sulfonate is an anionic surfactant that can be synthesized from palm oil as a raw material with the addition of sodium bisulfite and calcium oxide catalyst through transesterification and sulfonation process using microwave-assisted heating. The effect of microwave-assisted heating in the transesterification-sulfonation process was investigated in this study. The transesterification process was carried out using a microwave power of 300 watts for 10 minutes with an addition of a KOH catalyst of 1%. The transesterification process gave a result of palm oil methyl ester with a yield of up to 98% and density of 0.8546 gr/ml, and kinematic viscosity of 3.19 cSt. The sulfonation process is carried out using palm oil methyl ester and sodium bisulfite with a mole ratio of 1:3 and calcium oxide catalyst of 1.5% with the microwave power of 300 watts while varying the sulfonation time and temperature. The physicochemical properties of methyl ester sulfonate were analyzed, and the sulfonate group was characterized using FTIR. The optimum condition gave a yield of up to 98.68%, the density of 0.8657 gr/ml, viscosity of 3.75 cSt, pH of 2.12, and surface tension of up to 27.34 dyne/cm at a temperature of 100oC and sulfonation time of 40 minutes.
Appropriate Technology for Municipal Solid Waste Management Based on Wastepreneurship Implementation Diananto Prihandoko; Arief Budiman; Prabang Setyono; Chafid Fandeli; Maria Theresia Sri Budiastuti
ASEAN Journal of Chemical Engineering Vol 21, No 1 (2021)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ajche.64496

Abstract

Piyungan landfill is the biggest landfill in the Special Region of Yogyakarta, Indonesia, which receives municipal solid waste (MSW) from two districts and a city, while its designed service time has been over and faces operational obstacles. Meanwhile, the volume of the MSW grows rapidly and exceeds the reduction rate in their sources. The difficulty in finding a new landfill area is the reason why appropriate technological alternatives in the MSW management are strongly needed. Therefore, the study aimed to evaluate the social and economic aspects and formulate appropriate technology based on the waste entrepreneurship (wastepreneurship) concept. The methods of this study were conducting calculation of waste characteristics and composition, social evaluation, and economic evaluation of the combination of composting, incinerator, and sanitary landfill. Waste characteristics and composition were taken using direct field measurement following Indonesia's National Standard Guideline about retrieving and measuring examples of urban waste emergence and composition. Characteristics of waste are used for the calculation of calorific value and energy. The social evaluation was conducted using an in-depth interview with the rag pickers. The economic evaluation was conducted using net present value, internal rate of return, and payback period. The result of the study shows that Piyungan Landfill with total combustion waste reach 82.22% has the potential of incinerator implementation. In social evaluation, the implementation of composting and incinerator technologies would open employment for the surrounding community and rag pickers. The economic evaluation shows the combination of composting and incinerator technologies was economically feasible with an average profit margin of 12.97% in the operational period of 18 years. In conclusion, the concept of wastepreneurship is relevant in Piyungan Landfill by adjusting the MSW management paradigm from previously cost-center into business-center.
Mathematical Model for Water Flooding and HPAM Polymer Flooding in Enhanced Oil Recovery Ahmad Tawfiequrahman Yuliansyah; Bardi Murachman; Suryo Purwono
ASEAN Journal of Chemical Engineering Vol 21, No 1 (2021)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ajche.65531

Abstract

The need for energy, especially the petroleum-based one, is steadily increasing along with population growth and technological advancement. Meanwhile, oil exploitation from oil reservoirs using primary and secondary techniques can only obtain about 30%-50 % out of the original oil in place. Enhanced Oil Recovery (EOR) is a method for increasing oil recovery from a reservoir by injecting materials that are not found in the reservoir, such as surfactant, polymer, etc. This research aims to develop a mathematical model representing two-phase flow through porous media in the EOR process. This model was extended from mass balance and fluid flow in porous media equations. The reliability of the model was then validated by water flooding and polymer flooding experiment. A porous media, constituted by a silica sand pack, was saturated with 2 % brine and sequentially flooded with HPAM polymer solution at various concentrations (5,000-15,000 ppm). The volume of the oil coming out from the media at any time intervals was measured. Validation of the model was carried out by optimizing the model parameters to obtain the best curve-fitting on the plot of the percentage of cumulative recovered oil against time. The results showed that the proposed mathematical model was reliable enough to express both water and polymer-flooding processes.

Page 2 of 2 | Total Record : 13