cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Electrical Engineering and Computer Science
ISSN : 25024752     EISSN : 25024760     DOI : -
Core Subject :
Arjuna Subject : -
Articles 65 Documents
Search results for , issue "Vol 38, No 2: May 2025" : 65 Documents clear
A novel mobile application for personality assessment based on the five-factor model and graphology Remaida, Ahmed; Sabri, Zineb; Abdellaoui, Benyoussef; Fri, Chakir; Lakhchaf, Yassine; El Idrissi, Younès El Bouzekri; Lafraxo, Mohammed Amine; Moumen, Aniss
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 2: May 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i2.pp915-927

Abstract

With the rising interest over the last decade, automated graphology has emerged as a promising filed of research, providing new insights on personality traits prediction on the basis of handwriting analysis. Although, few practical solutions to automate the extraction of handwriting features and personality prediction exist in the literature. This work aims to contribute to closing the gap in automated handwriting personality prediction by proposing a novel mobile application that uses robust feature extraction and machine learning models to predict big five personality traits. Our findings, based on high correlations between handwriting characteristics and personality traits, revealed convincing links. Notably, extraversion and extraversion have strong correlations with top margin feature, whereas agreeableness is expressed through line spacing. These findings emphasize the ability of automated graphology to properly interpret individual personalities. The proposed system achieved exceptional accuracy by using well known machine learning classifiers. The testing accuracy exceeded 92% in binary classification and 87% in multi-class case scenario, proving the adaptability and dependability of the system’s architecture. Our Android app promises to provide users with unprecedented insights into their personalities, establishing a robust tool for psychological assessment and self-discovery.
Measuring political influence during elections using a deep learning approach Cherkaoui, Abderrazzak; El Beqqali, Omar
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 2: May 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i2.pp1273-1288

Abstract

This contribution introduces a methodology for measuring political influence on Twitter during the 2020 U.S. presidential election campaign. The approach employs deep knowledge scores, which are generated through sentiment analysis of Tweets from users responding to influential users, coupled with an assessment of the strength of their interactions. The deep knowledge scores enable the categorization of three types of Twitter’s users engaging with influential users: influenced users, distrustful users, and connected users. Our approach, structured around a five-layer framework, effectively constructs networks of trust and distrust, and establishes the relationship between fluctuations in trust or distrust levels and the topics discussed by influential users.
RNN-driven integration of spatial, temporal, features for Indian sign language recognition and video captioning Pol, Ajay Manohar; Patil, Shrinivas A.
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 2: May 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i2.pp821-829

Abstract

This paper presents a novel model that integrates spatial features from residual blocks and temporal features from FFT, alongside a sophisticated RNN architecture comprising BiLSTM, gated recurrent units (GRU) layers, and multi-head attention. Achieving nearly 99% accuracy on both WLASL and INCLUDE datasets, this model outperforms standard CNN pretrained models in feature extraction. Notably, the BiLSTM and GRU combination proves superior to other combinations such as LSTM and GRU. The BLEU score analysis further validates the model's efficacy, with scores of 0.51 and 0.54 on the WLASL and INCLUDE datasets, respectively. These results affirm the model's proficiency in capturing intricate spatial and temporal nuances inherent in sign language gestures, enhancing accessibility and communication for the deaf and hard-of-hearing communities. The comparison highlights the superiority of this paper's proposed model over standard approaches, emphasizing the significance of the integrated architecture. Continued refinement and optimization hold promise for further augmenting the model's performance and applicability in real-world scenarios, contributing to inclusive communication environments.
Word embedding for contextual similarity using cosine similarity Asri, Yessy; Kuswardani, Dwina; Sari, Amanda Atika; Ansyari, Atikah Rifdah
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 2: May 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i2.pp1170-1180

Abstract

Perspectives on technology often have similarities in certain contexts, such as information systems and informatics engineering. The source of opinion data comes from the Quora application, with a retrieval limit of the last 5 years. This research aims to implement Indo-bidirectional encoder representations from transformers (BERT), a variant of the BERT model optimized for Indonesian language, in the context of information system (IS) and information technology (IT) topic classification with 414 original data, which, after being augmented using the synonym replacement method, The generated data becomes 828. Data augmentation aims to evaluate the performance of models by using synonyms and rearranging text while maintaining meaning and structure. The approach used is to label the opinion text based on the cosine similarity calculation of the embedding token from the IndoBERT model. Then, the IndoBERT model is applied to classify the reviews. The experimental results show that the approach of using IndoBERT to classify SI and IT topics based on contextual similarity achieves 90% accuracy based on the confusion matrix. These positive results show the great potential of using transformer-based language models, such as IndoBERT, to support the analysis of comments and related topics in Indonesian.
Implementation of innovative deep learning techniques in smart power systems Devi, Odugu Rama; Kolluru, Pavan Kumar; Shaik, Nagul; Trinadh Naidu, Kamparapu V. V. Satya; Mohan, Chunduri; Mohana Rai, Pottasiri Chandra; Bhukya, Lakshmi
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 2: May 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i2.pp723-731

Abstract

The integration of deep learning techniques into smart power systems has gained significant attention due to their potential to optimize energy management, enhance grid reliability, and enable efficient utilization of renewable energy sources. This research article explores the enhanced application of deep learning techniques in smart power systems. It provides an overview of the key challenges faced by traditional power systems and presents various deep learning methodologies that can address these challenges. The results showed that the root mean square errors (RMSE) for the weekend power load forecast were 18.4 for the random forest and 18.2 for the long short-term memory (LSTM) algorithm, while 28.6 was predicted by the support vector machine (SVM) algorithm. The authors' approach provides the most accurate forecast (15.7). After being validated using real-world load data, this technique provides reliable power load predictions even when load oscillations are present. The article also discusses recent advancements, future research directions, and potential benefits of utilizing deep learning techniques in smart power systems.
Enhancing SDN security using ensemble-based machine learning approach for DDoS attack detection Hirsi, Abdinasir; Audah, Lukman; Salh, Adeb; Alhartomi, Mohammed A.; Ahmed, Salman
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 2: May 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i2.pp1073-1085

Abstract

Software-defined networking (SDN) is a groundbreaking technology that transforms traditional network frameworks by separating the control plane from the data plane, thereby enabling flexible and efficient network management. Despite its advantages, SDN introduces vulnerabilities, particularly distributed denial of service (DDoS) attacks. Existing studies have used single, hybrid, and ensemble machine learning (ML) techniques to address attacks, often relying on generated datasets that cannot be tested because of accessibility issues. A major contribution of this study is the creation of a novel, publicly accessible dataset, and benchmarking the proposed approach against existing public datasets to demonstrate its effectiveness. This paper proposes a novel approach that combines ensemble learning models with principal component analysis (PCA) for feature selection. The integration of ensemble learning models enhances predictive performance by leveraging multiple algorithms to improve accuracy and robustness. The results showed that the ensemble of random forests (ENRF) model achieved the highest performance across all metrics with 100% accuracy, precision, recall, and F1-score. This study provides a comprehensive solution to the limitations of existing models by offering superior performance, as evidenced by the comparative analysis, establishing this approach as the best among the evaluated models.
The integration of metaverse technology in healthcare: a comprehensive review and future research directions Roy, Rita; Das, Tarinmoy; Karras, Dimitrios Alexios
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 2: May 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i2.pp975-987

Abstract

The impact of using the metaverse in healthcare is investigated in this research work. Emerging technologies are essential to enhancing medical consultants’ care, especially in developing countries like India. The study filters and reviews the pertinent literature using the scientific procedures and rationales for systematic literature reviews (SPAR-4-SLR) methodology. The initial search yielded 180 articles. Forty-four articles were considered for the study after screening the papers in light of the research questions and relevant literature. The theory-context-characteristics-methodology (TCCM) framework is used in this study to assess future metaverse research trends. This study also used the context, intervention, mechanism, and outcome (CIMO) logic for planning and decision-making. This study examines the development of metaverse research over the past ten years and supports research findings published in peer-reviewed journals. Based on the TCCM framework, recommendations have been made for additional research.
Accurate segmentation of fruit based on deep learning Elsoud, Esraa Abu; Alidmat, Omar; Abuowaida, Suhaila; Alhenawi, Esraa; Alshdaifat, Nawaf; Aburomman, Ahmad; Chan, Huah Yong
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 2: May 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i2.pp1331-1338

Abstract

In the last few years, deep learning has exhibited its efficacy and capacity in the field of computer vision owing to its exceptional precision and widespread acceptance. The primary objective of this study is to investigate an improved approach for segmentation in the context of various fruit categories. Despite the utilization of deep learning, the current segmentation techniques for various fruit items exhibit subpar performance. The proposed enhanced multiple fruit segmentation algorithm has the following main steps: 1) modifying the size of the filter, 2) the process of optimizing the ResNet-101 block involves selecting the most suitable count of repetitions. The multiple fruit dataset is split 80% in the training stage and 20% in the testing stage. These images were utilized to train a deep learning (DL) based algorithm, which aims to identify multiple fruit items within images accurately. The proposed algorithm has a lower training time compared to the other algorithms. The thresholds exhibit greater values compared to the thresholds of state-of-the-art algorithms.
Enhancing mobility with customized prosthetic designs driven by genetic algorithms Seeni, Senthil Kumar; Harshitha, Ganadamoole Madhava; Rathinam, Anantha Raman; Venkatara, Nagaiyanallur Lakshminarayanan; Sasirekha, Venkatesan; Tidke, Bharat; Murugan, Subbiah
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 2: May 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i2.pp876-886

Abstract

Using genetic algorithms, this research intends to usher in a new era of prosthetic design that is redefining mobility. Through repeated evolutionary processes influenced by natural selection, the goal is to optimize prosthetic design parameters including material composition, structure, and control systems. The objective is to create prosthetic limbs that are more personalized to each user's requirements, improving their efficiency, comfort, and functioning via the application of genetic algorithms. The goal of this study is to show that the suggested strategy may improve mobility and user happiness more than standard ways by simulating and testing prosthetic devices in real-world settings. The end goal is to create conditions for a new age of prosthetic technology, where amputees' quality of life is greatly enhanced by devices that are individually designed to meet their biomechanical needs. The impact of prosthetic design and individual patient factors patient dataset derived from a random 5-sample with the following characteristics: ages 32–68, weight 65–90, height 155–180, crossover rate 0.6–0.9, mutation rate 0.05–0.2, population size 70–120, generations 30–60.
Textual and numerical data fusion for depression detection: a machine learning framework Aziz, Mohammad Tarek; Mahmud, Tanjim; Abdul Aziz, Md Faisal Bin; Siddick, Md Abu Bakar; Sharif, Md. Maskat; Hossain, Mohammad Shahadat; Andersson, Karl
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 2: May 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i2.pp1231-1244

Abstract

Depression, a widespread mood disorder, significantly affects global mental health. To mitigate the risk of recurrence, early detection is crucial. This study explores socioeconomic factors contributing to depression and proposes a novel machine learning (ML)-based framework for its detection. We develop a tailored questionnaire to collect textual and numerical data, followed by rigorous feature selection using methods like backward removal and Pearson’s chi-squared test. A variety of ML algorithms, including random forest (RF), support vector machine (SVM), and logistic regression (LR), are employed to create a predictive classifier. The RF model achieves the highest accuracy of 96.85%, highlighting its effectiveness in identifying depression risk factors. This research advances depression detection by integrating socioeconomic analysis with ML, offering a robust tool for enhancing predictive accuracy and enabling proactive mental health interventions.

Filter by Year

2025 2025


Filter By Issues
All Issue Vol 40, No 2: November 2025 Vol 40, No 1: October 2025 Vol 39, No 3: September 2025 Vol 39, No 2: August 2025 Vol 39, No 1: July 2025 Vol 38, No 3: June 2025 Vol 38, No 2: May 2025 Vol 38, No 1: April 2025 Vol 37, No 3: March 2025 Vol 37, No 2: February 2025 Vol 37, No 1: January 2025 Vol 36, No 3: December 2024 Vol 36, No 2: November 2024 Vol 36, No 1: October 2024 Vol 35, No 3: September 2024 Vol 35, No 2: August 2024 Vol 35, No 1: July 2024 Vol 34, No 3: June 2024 Vol 34, No 2: May 2024 Vol 34, No 1: April 2024 Vol 33, No 3: March 2024 Vol 33, No 2: February 2024 Vol 33, No 1: January 2024 Vol 32, No 3: December 2023 Vol 32, No 1: October 2023 Vol 31, No 3: September 2023 Vol 31, No 2: August 2023 Vol 31, No 1: July 2023 Vol 30, No 3: June 2023 Vol 30, No 2: May 2023 Vol 30, No 1: April 2023 Vol 29, No 3: March 2023 Vol 29, No 2: February 2023 Vol 29, No 1: January 2023 Vol 28, No 3: December 2022 Vol 28, No 2: November 2022 Vol 28, No 1: October 2022 Vol 27, No 3: September 2022 Vol 27, No 2: August 2022 Vol 27, No 1: July 2022 Vol 26, No 3: June 2022 Vol 26, No 2: May 2022 Vol 26, No 1: April 2022 Vol 25, No 3: March 2022 Vol 25, No 2: February 2022 Vol 25, No 1: January 2022 Vol 24, No 3: December 2021 Vol 24, No 2: November 2021 Vol 24, No 1: October 2021 Vol 23, No 3: September 2021 Vol 23, No 2: August 2021 Vol 23, No 1: July 2021 Vol 22, No 3: June 2021 Vol 22, No 2: May 2021 Vol 22, No 1: April 2021 Vol 21, No 3: March 2021 Vol 21, No 2: February 2021 Vol 21, No 1: January 2021 Vol 20, No 3: December 2020 Vol 20, No 2: November 2020 Vol 20, No 1: October 2020 Vol 19, No 3: September 2020 Vol 19, No 2: August 2020 Vol 19, No 1: July 2020 Vol 18, No 3: June 2020 Vol 18, No 2: May 2020 Vol 18, No 1: April 2020 Vol 17, No 3: March 2020 Vol 17, No 2: February 2020 Vol 17, No 1: January 2020 Vol 16, No 3: December 2019 Vol 16, No 2: November 2019 Vol 16, No 1: October 2019 Vol 15, No 3: September 2019 Vol 15, No 2: August 2019 Vol 15, No 1: July 2019 Vol 14, No 3: June 2019 Vol 14, No 2: May 2019 Vol 14, No 1: April 2019 Vol 13, No 3: March 2019 Vol 13, No 2: February 2019 Vol 13, No 1: January 2019 Vol 12, No 3: December 2018 Vol 12, No 2: November 2018 Vol 12, No 1: October 2018 Vol 11, No 3: September 2018 Vol 11, No 2: August 2018 Vol 11, No 1: July 2018 Vol 10, No 3: June 2018 Vol 10, No 2: May 2018 Vol 10, No 1: April 2018 Vol 9, No 3: March 2018 Vol 9, No 2: February 2018 Vol 9, No 1: January 2018 Vol 8, No 3: December 2017 Vol 8, No 2: November 2017 Vol 8, No 1: October 2017 Vol 7, No 3: September 2017 Vol 7, No 2: August 2017 Vol 7, No 1: July 2017 Vol 6, No 3: June 2017 Vol 6, No 2: May 2017 Vol 6, No 1: April 2017 Vol 5, No 3: March 2017 Vol 5, No 2: February 2017 Vol 5, No 1: January 2017 Vol 4, No 3: December 2016 Vol 4, No 2: November 2016 Vol 4, No 1: October 2016 Vol 3, No 3: September 2016 Vol 3, No 2: August 2016 Vol 3, No 1: July 2016 Vol 2, No 3: June 2016 Vol 2, No 2: May 2016 Vol 2, No 1: April 2016 Vol 1, No 3: March 2016 Vol 1, No 2: February 2016 Vol 1, No 1: January 2016 Vol 16, No 3: December 2015 Vol 16, No 2: November 2015 Vol 16, No 1: October 2015 Vol 15, No 3: September 2015 Vol 15, No 2: August 2015 Vol 15, No 1: July 2015 Vol 14, No 3: June 2015 Vol 14, No 2: May 2015 Vol 14, No 1: April 2015 Vol 13, No 3: March 2015 Vol 13, No 2: February 2015 Vol 13, No 1: January 2015 Vol 12, No 12: December 2014 Vol 12, No 11: November 2014 Vol 12, No 10: October 2014 Vol 12, No 9: September 2014 Vol 12, No 8: August 2014 Vol 12, No 7: July 2014 Vol 12, No 6: June 2014 Vol 12, No 5: May 2014 Vol 12, No 4: April 2014 Vol 12, No 3: March 2014 Vol 12, No 2: February 2014 Vol 12, No 1: January 2014 Vol 11, No 12: December 2013 Vol 11, No 11: November 2013 Vol 11, No 10: October 2013 Vol 11, No 9: September 2013 Vol 11, No 8: August 2013 Vol 11, No 7: July 2013 Vol 11, No 6: June 2013 Vol 11, No 5: May 2013 Vol 11, No 4: April 2013 Vol 11, No 3: March 2013 Vol 11, No 2: February 2013 Vol 11, No 1: January 2013 Vol 10, No 8: December 2012 Vol 10, No 7: November 2012 Vol 10, No 6: October 2012 Vol 10, No 5: September 2012 Vol 10, No 4: August 2012 Vol 10, No 3: July 2012 More Issue