cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Electrical Engineering and Computer Science
ISSN : 25024752     EISSN : 25024760     DOI : -
Core Subject :
Arjuna Subject : -
Articles 28 Documents
Search results for , issue "Vol 4, No 3: December 2016" : 28 Documents clear
Mining Top-K Click Stream Sequences Patterns MEHDI Haj Ali; Qun-Xiong Zhu; Yan-Lin He
Indonesian Journal of Electrical Engineering and Computer Science Vol 4, No 3: December 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v4.i3.pp655-664

Abstract

Sequential pattern mining, it  is not just important in data mining field , but  it is the basis of many applications .However, running applications cost time and memory, especially when dealing with dense of the dataset. Setting the proper minimum support threshold is one of the factors that consume more memory and time. However ,  it is difficult for users to get the appropriate patterns, it may present too many sequential patterns  and makes it difficult for users to comprehend the results. The problem becomes worse and worse when dealing with long click stream sequences or huge dataset. As a solution, we developed an efficient algorithm, called TopK (Top-K click stream sequence pattern mining), which employs the output as top-k patterns , K is the most important and relevant frequencies (with a high support) . However ,our algorithm based on pseudo-projection to avoid consuming more time and memory, and uses several efficient search space pruning methods together with BI-Directional Extension. Our extensive study and experiments on real click stream datasets show TopK significantly outperforms the previous algorithms.
Power Quality Improvement in Fourteen Bus System using Non-Conventional Source Based ANN Controlled DPFC System Akhib Khan Bahamani; G.M. Sreerama Reddy; V. Ganesh
Indonesian Journal of Electrical Engineering and Computer Science Vol 4, No 3: December 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v4.i3.pp499-507

Abstract

DPFC can be used to improve receiving end voltage of fourteen bus system. This paper shows the conception and simulation of wind and solar based distribution power flow controller for sag compensation and ohmic loss reduction. The objectives of this work are to improve the voltage and reduce the line losses. Fourteen bus systems with DPFC in open loop is simulated. Fourteen bus system with DPFC in closed loop using PI and ANN are also simulated and the results are presented. The comparative study is presented to demonstrate the improvement in dynamic response of ANN controlled DPFC system. ANN is observed to provide better control than has other controllers and improved damping characterises.
Clustering Large Data with Mixed Values Using Extended Fuzzy Adaptive Resonance Theory Asadi Srinivasulu; Gadupudi Dakshayani
Indonesian Journal of Electrical Engineering and Computer Science Vol 4, No 3: December 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v4.i3.pp617-628

Abstract

Clustering is one of the technique or approach in content mining and it is used for grouping similar items. Clustering software datasets with mixed values is a major challenge in clustering applications. The previous work deals with unsupervised feature learning techniques such as k-Means and C-Means which cannot be able to process the mixed type of data. There are several drawbacks in the previous work such as cluster tendency, partitioning, less accuracy and less performance. To overcome all those problems the extended fuzzy adaptive resonance theory (EFART) came into existence which indicates that the usage of fuzzy ART with some traditional approach. This work deals with mixed type of data by applying unsupervised feature learning for achieving the sparse representation to make it easier for clustering algorithms to separate the data. The advantages of extended fuzzy adaptive resonance theory are high accuracy, high performance, good partitioning, and good cluster tendency. This EFART adopts unsupervised feature learning which helps to cluster the large data sets like the teaching assistant evaluation, iris and the wine datasets. Finally, the obtained results may consist of clusters which are formed based on the similarity of their attribute type and values.
Combined Beamforming with Orthogonal Space Time Block Code for MIMO-OFDM with Simple Feedback Hala M. Abd Elkader; Gamal M. Abdel-Hamid; Adly Tag El-Dien; Asmaa A. Nassif
Indonesian Journal of Electrical Engineering and Computer Science Vol 4, No 3: December 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v4.i3.pp580-585

Abstract

In this paper, we introduce a proposed scheme to enhance the performance of orthogonal space time block code (OSTBC) with four time slots and two antennas by combing OSTBC with random beamforming to can use it in the downlink transmission for a mobile system.  Multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) system has been recognized as one of the most promising techniques to achieve a good service and increase data rate in the next generation (4&5G) broadband wireless communications. So, we apply Space time block code (STBC) for MIMO-OFDM system with linear decoding.  Also, we perform STBC with beamforming for MIMO-OFDM system to improve the performance of a system. Simulation results show that the beamforming improves bit error rate (BER) performance of OSTBC and STBC-OFDM for different types of modulation and diversity.
Optimization of Makespan in Job Shop Scheduling Problem by Golden Ball Algorithm Fatima Sayoti; Mohammed Essaid Riffi; Halima Labani
Indonesian Journal of Electrical Engineering and Computer Science Vol 4, No 3: December 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v4.i3.pp542-547

Abstract

Job shop scheduling problem (JSSP) is considered to belong to the class of NP-hard combinatorial optimization problem. Finding a solution to this problem is equivalent to solving different problems of various fields such as industry and logistics. The objective of this work is to optimize the makespan in JSSP using Golden Ball algorithm. In this paper we propose an efficient adaptation of Golden Ball algorithm to the JSSP. Numerical results are presented for 36 instances of OR-Library. The computational results show that the proposed adaptation is competitive when compared with other existing methods in the literature; it can solve the most of the benchmark instances.
Reverse Conversion of Signed-Digit Number Systems: Transforming Radix-Complement Output Madhu Sudan Chakraborty; Abhoy Chand Mondal
Indonesian Journal of Electrical Engineering and Computer Science Vol 4, No 3: December 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v4.i3.pp665-669

Abstract

Although the speed advantage of using signed – digit number systems seemed to have been reduced significantly by reverse conversion owing to the carry – propagation, in this paper, it was shown that if typical reverse conversion algorithms were employed for signed – digit number systems, then no further carry propagation needed to transform the output from radix – complement form to other conventional forms. As a result the instantaneous delay caused by the reverse conversion of signed – digit number systems might be compensated by speed gain at later stages.
Flexible Power Regulation of Grid-Connected Inverters for PV Systems Using Model Predictive Direct Power Control R S Ravi Sankar; S.V. Jayaram Kumar; K. K. Deepika
Indonesian Journal of Electrical Engineering and Computer Science Vol 4, No 3: December 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v4.i3.pp508-519

Abstract

This paper presents a Model Predictive Direct Power Control (MPDPC) strategy for a grid-connected inverter used in a photovoltaic system, as found in many distributed generating installations. The controller uses a system model to predict the system behavior at each sampling instant. Using a cost function, the voltage vector with least power ripple is generated. The resultant voltage vector is applied during the next sampling period which gives flexible power regulation. The effectiveness of the proposed MPDPC strategy is verified using MATLAB/ SIMULINK. 
A New Memory MapReduce Framework for Higher Access to Resources ZuKuan WEI; Bo HONG; JaeHong KIM
Indonesian Journal of Electrical Engineering and Computer Science Vol 4, No 3: December 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v4.i3.pp629-636

Abstract

The demand for highly parallel data processing platform was growing due to an explosion in the number of massive-scale data applications both in academia and industry. MapReduce was one of the most meaningful solutions to deal with big data distributed computing, This paper was based on the work of Hadoop MapReduce. In the face of massive data computing and calculation process, MapReduce generated a lot of dynamic data, but these data were discarded after the task completed. Meanwhile, a large number of dynamic data were written to HDFS during task execution, caused much unnecessary IO cost. In this paper, we analyzed existing distributed caching mechanism and proposed a new Memory MapReduce framework that has a real-time response to read or write request from task nodes, maintain related information about cache data. After performance testing, we could clearly find MapReduce with cache significantly improved in IO performance.
Model for Estimating Above Ground Biomass of Reclamation Forest using Unmanned Aerial Vehicles Sri Wahyuni; I Nengah Surati Jaya; Nining Puspaningsih
Indonesian Journal of Electrical Engineering and Computer Science Vol 4, No 3: December 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v4.i3.pp586-593

Abstract

Among various stand parameters, the density of biomass volume is oftenly used as an indicator on evaluating the forest growth succes. The forest reclamation, which is intended to restore the land cover by revegetation process, the evaluation of biomass content has been a critical issue. Forest reclamation is expected to restore the land function to a proper state that might give better environment as well as productivity. In this study the authors develop a method for estimating above ground biomass (AGB), particularly in the ex open-pit coal mining area of PT. Bukit Asam Tbk using remotely-sended data taken from unmanned aerial vehicle (UAV) and developed using the least squares method. The main objective of this study is to develop a mathematical model of biomass estimation using UAV imagery having 10-cm spatial resolution. The study found that the best model of biomass estimation is: AGB(ton/ha)=0.2377Ci1.3688 with the correlation coefficient of 0.844, mean deviation of 2.29, aggregate deviation of -0.023, bias of 0.98, and Root Mean Square Error (RMSE) of 1.784 and mean deviation (MD) < 10% while Ci. This research concluded that UAV imagery could be used to estimate above ground biomass accurately.
High-Order Sliding Mode Control of Greenhouse Temperature H. Oubehar; A. Ed-Dahhak; A. Selmani; M. Outanoute; A. Lachhab; M. Guerbaoui; M.H. Archidi; B. Bouchikhi
Indonesian Journal of Electrical Engineering and Computer Science Vol 4, No 3: December 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v4.i3.pp548-554

Abstract

This paper deals with the design and implementation of the high order sliding mode controller to control temperature greenhouse. The control objective aims to ensure a favorable microclimate for the culture development and to minimize the production cost. We propose performing regulation for the greenhouse internal temperature based on the second order sliding mode technique known as Super Twisting Algorithm (STA). This technique is able to ensure robustness with respect to bounded external disturbances. A successful feasibility study of the proposed controller is applied to maintien a desired temperature level under an experimental greenhouse. The obtained results show promising performances despite changes of the external meteorological conditions.

Page 2 of 3 | Total Record : 28


Filter by Year

2016 2016


Filter By Issues
All Issue Vol 41, No 1: January 2026 Vol 40, No 3: December 2025 Vol 40, No 2: November 2025 Vol 40, No 1: October 2025 Vol 39, No 3: September 2025 Vol 39, No 2: August 2025 Vol 39, No 1: July 2025 Vol 38, No 3: June 2025 Vol 38, No 2: May 2025 Vol 38, No 1: April 2025 Vol 37, No 3: March 2025 Vol 37, No 2: February 2025 Vol 37, No 1: January 2025 Vol 36, No 3: December 2024 Vol 36, No 2: November 2024 Vol 36, No 1: October 2024 Vol 35, No 3: September 2024 Vol 35, No 2: August 2024 Vol 35, No 1: July 2024 Vol 34, No 3: June 2024 Vol 34, No 2: May 2024 Vol 34, No 1: April 2024 Vol 33, No 3: March 2024 Vol 33, No 2: February 2024 Vol 33, No 1: January 2024 Vol 32, No 3: December 2023 Vol 32, No 1: October 2023 Vol 31, No 3: September 2023 Vol 31, No 2: August 2023 Vol 31, No 1: July 2023 Vol 30, No 3: June 2023 Vol 30, No 2: May 2023 Vol 30, No 1: April 2023 Vol 29, No 3: March 2023 Vol 29, No 2: February 2023 Vol 29, No 1: January 2023 Vol 28, No 3: December 2022 Vol 28, No 2: November 2022 Vol 28, No 1: October 2022 Vol 27, No 3: September 2022 Vol 27, No 2: August 2022 Vol 27, No 1: July 2022 Vol 26, No 3: June 2022 Vol 26, No 2: May 2022 Vol 26, No 1: April 2022 Vol 25, No 3: March 2022 Vol 25, No 2: February 2022 Vol 25, No 1: January 2022 Vol 24, No 3: December 2021 Vol 24, No 2: November 2021 Vol 24, No 1: October 2021 Vol 23, No 3: September 2021 Vol 23, No 2: August 2021 Vol 23, No 1: July 2021 Vol 22, No 3: June 2021 Vol 22, No 2: May 2021 Vol 22, No 1: April 2021 Vol 21, No 3: March 2021 Vol 21, No 2: February 2021 Vol 21, No 1: January 2021 Vol 20, No 3: December 2020 Vol 20, No 2: November 2020 Vol 20, No 1: October 2020 Vol 19, No 3: September 2020 Vol 19, No 2: August 2020 Vol 19, No 1: July 2020 Vol 18, No 3: June 2020 Vol 18, No 2: May 2020 Vol 18, No 1: April 2020 Vol 17, No 3: March 2020 Vol 17, No 2: February 2020 Vol 17, No 1: January 2020 Vol 16, No 3: December 2019 Vol 16, No 2: November 2019 Vol 16, No 1: October 2019 Vol 15, No 3: September 2019 Vol 15, No 2: August 2019 Vol 15, No 1: July 2019 Vol 14, No 3: June 2019 Vol 14, No 2: May 2019 Vol 14, No 1: April 2019 Vol 13, No 3: March 2019 Vol 13, No 2: February 2019 Vol 13, No 1: January 2019 Vol 12, No 3: December 2018 Vol 12, No 2: November 2018 Vol 12, No 1: October 2018 Vol 11, No 3: September 2018 Vol 11, No 2: August 2018 Vol 11, No 1: July 2018 Vol 10, No 3: June 2018 Vol 10, No 2: May 2018 Vol 10, No 1: April 2018 Vol 9, No 3: March 2018 Vol 9, No 2: February 2018 Vol 9, No 1: January 2018 Vol 8, No 3: December 2017 Vol 8, No 2: November 2017 Vol 8, No 1: October 2017 Vol 7, No 3: September 2017 Vol 7, No 2: August 2017 Vol 7, No 1: July 2017 Vol 6, No 3: June 2017 Vol 6, No 2: May 2017 Vol 6, No 1: April 2017 Vol 5, No 3: March 2017 Vol 5, No 2: February 2017 Vol 5, No 1: January 2017 Vol 4, No 3: December 2016 Vol 4, No 2: November 2016 Vol 4, No 1: October 2016 Vol 3, No 3: September 2016 Vol 3, No 2: August 2016 Vol 3, No 1: July 2016 Vol 2, No 3: June 2016 Vol 2, No 2: May 2016 Vol 2, No 1: April 2016 Vol 1, No 3: March 2016 Vol 1, No 2: February 2016 Vol 1, No 1: January 2016 Vol 16, No 3: December 2015 Vol 16, No 2: November 2015 Vol 16, No 1: October 2015 Vol 15, No 3: September 2015 Vol 15, No 2: August 2015 Vol 15, No 1: July 2015 Vol 14, No 3: June 2015 Vol 14, No 2: May 2015 Vol 14, No 1: April 2015 Vol 13, No 3: March 2015 Vol 13, No 2: February 2015 Vol 13, No 1: January 2015 Vol 12, No 12: December 2014 Vol 12, No 11: November 2014 Vol 12, No 10: October 2014 Vol 12, No 9: September 2014 Vol 12, No 8: August 2014 Vol 12, No 7: July 2014 Vol 12, No 6: June 2014 Vol 12, No 5: May 2014 Vol 12, No 4: April 2014 Vol 12, No 3: March 2014 Vol 12, No 2: February 2014 Vol 12, No 1: January 2014 Vol 11, No 12: December 2013 Vol 11, No 11: November 2013 Vol 11, No 10: October 2013 Vol 11, No 9: September 2013 Vol 11, No 8: August 2013 Vol 11, No 7: July 2013 Vol 11, No 6: June 2013 Vol 11, No 5: May 2013 Vol 11, No 4: April 2013 Vol 11, No 3: March 2013 Vol 11, No 2: February 2013 Vol 11, No 1: January 2013 Vol 10, No 8: December 2012 Vol 10, No 7: November 2012 Vol 10, No 6: October 2012 Vol 10, No 5: September 2012 Vol 10, No 4: August 2012 Vol 10, No 3: July 2012 More Issue