cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Electrical Engineering and Computer Science
ISSN : 25024752     EISSN : 25024760     DOI : -
Core Subject :
Arjuna Subject : -
Articles 9,138 Documents
Breast cancer relapse disease prediction improvements with ensemble learning approaches Sahoo, Ghanashyam; Nayak, Ajit Kumar; Tripathy, Pradyumna Kumar; Pati, Abhilash; Panigrahi, Amrutanshu; Rath, Adyasha; Moharana, Bhimasen
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 1: July 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i1.pp335-342

Abstract

Diagnosis and prognosis are especially difficult areas of medical research related to cancer due to the high incidence of breast cancer, which has surpassed all other cancers in terms of female mortality. Another factor that has a substantial influence on the quality of life of cancer patients is the fear that they may experience a relapse of their disease. The objective of the study is to give medical practitioners a more effective strategy for using ensemble learning techniques to forecast when breast cancer may recur. This research aimed to investigate the usage of deep neural networks (DNNs) and artificial neural networks (ANNs) in addition to machine learning (ML) based approaches, including bagging, averaging, and voting, to enhance the efficacy of breast cancer relapse diagnosis on two breast cancer relapse datasets. Results from the empirical study demonstrate that the proposed ensemble learning-enabled approach improves accuracies by 96.31% and 95.81%, precisions by 96.70% and 96.15%, sensitivities by 98.88% and 98.68%, specificities by 84.62% in both, F1-scores by 97.78% and 97.40%, and area under the curve (AUCs) of 0.987 and 0.978, with University Medical Centre, Institute of Oncology (UMCIO) and Wisconsin prognostic breast cancer (WPBC) datasets respectively. Consequently, these improved disease outcomes may encourage physicians to use this model to make better treatment choices.
Human addictive behavior prediction by using lime with ensemble model V Sabapathi; Selvin Paul Peter Jacob; Woothukadu Thirumaran Chembian; Kandasamy Thinakaran
Indonesian Journal of Electrical Engineering and Computer Science Vol 33, No 1: January 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v33.i1.pp634-642

Abstract

The data-driven techniques have utilized data mining and machine learning (ML) techniques in the biomedical and healthcare fields. The process of decision-making in uncertain contextual related to human addictions and emotions play an important role in the present research. The main aim of the research is to perform classification and generate a support system for uncertain addiction circumstances by proposing a technique for drug addiction treatment. The human behavior has majority shown challenges for the prediction of human behaviors that includes body poses estimation, movements and interaction with objects. This pose estimation has showed complexity with more pose aspects and the proposed research attempts to understand the human behaviors. The present research uses the local interpretable model-agnostic explanations (LIME) for finding the input features which are most important to generate a particular output based on decision service. LIME understands the model to perturb the data samples as an input and understands shows predictions change. Also, the ensemble classifier contains classifiers group that combines for performing the prediction of all unseen instances based on voting. The proposed LIME Feature-Ensemble classifier obtained 97.54% of accuracy when compared to the existing convolutional neural network (CNN) of 59.33% and Ensemble model of 93.33% accuracy.
Cloud computing: an efficient load balancing and scheduling of task method using a hybrid optimization algorithm Ravinder Ravinder; Naresh Vurukonda
Indonesian Journal of Electrical Engineering and Computer Science Vol 32, No 3: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v32.i3.pp1545-1556

Abstract

The cloud computing trend on the internet is vital as it allows data and applications to be managed over the internet instead of requiring personal devices. The job of users is scheduled in the resources of the cloud in order to improve performance. Schedu ling tasks is an non - deterministic polynomial (NP) - hard problem, as it may have multiple solutions. Various researchers have proposed different load balancing and job scheduling algorithms to optimize the scheduling process in cloud environments, each with disadvantages. Therefore, this research proposes a novel hybrid load balancing and scheduling of tasks by the whale optimization algo rithm (WOA) and seagull optimization algorithm (SOA) in the cloud. This hybrid proposed whale - seagull optimization algorithm (WSOA) optimizes task scheduling in the cloud b y reducing processing time, response, and execution time, maximizing central processing unit (CPU) utilization, memory utilization, throughput, reliability, and balancing the load. The algorithm is simulated using the CloudSim toolkit package. As compared with existing approaches, simulation results showed better performance in terms of response time, processing time, execution time, CPU utilization, memory utilization, throughput, and reliability and is analyzed by comparing with the harries hawks optimiza tion (HHO), hybrid dragonfly and firefly algorithm (ADA), spider monkey algorithm (SMA) and bird swarm optimization (BSO).
MobileNetV2-D and multiple cameras for swiftlet nest classification based on feather intensity Denny Indrajaya; Hanna Arini Parhusip; Suryasatriya Trihandaru; Djoko Hartanto
Indonesian Journal of Electrical Engineering and Computer Science Vol 34, No 2: May 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v34.i2.pp1144-1158

Abstract

MobileNetV2-D is a modified version of MobileNetV2, which is the novelty of this article. The algorithm is used to classify swiftlet nests into seven classes. In 2023, PT Waleta Asia Jaya is required to achieve a 7-fold increase in the export quota of swiftlet nests. To meet the quota, the company made a machine that can recognize swiftlet nest objects, which are classified into seven classes based on feather intensity, namely BRS, BR, BST, BS, BBT, BB, and BB2 for the light feathers to the heavy feathers, respectively. The input image is a combination of four images from four cameras with different positions, which adds to the novelty of MobileNetV2-D for the particular problem here. From the evaluation that has been carried out, the accuracy value of the MobileNetV2-D model was better than the MobileNetV2 model, i.e., the accuracy value of the MobileNetV2-D model was 99.9928% for the training dataset and 94.0723% for the testing dataset. Moreover, the speed of MobileNetV2-D is better than MobileNetV2- architecture.
Available medical imaging modalities for melanoma screening Hamza Abu Owida; Muhammad Saleh Al-Ayyad; Jamal Al-Nabulsi; Nidal Turab
Indonesian Journal of Electrical Engineering and Computer Science Vol 34, No 1: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v34.i1.pp245-253

Abstract

The prevalence of melanoma of the skin has seen a significant rise in recent decades, constituting approximately one-third of all diagnosed cancer cases. Melanoma, the most fatal variant among cutaneous malignancies, exhibits a 4% probability of occurrence over an individual’s lifetime. The increasing incidence and mortality rates of skin cancer impose a substantial burden on healthcare resources and the economy. In recent years, several optical modalities, including dermoscopy, reflectance confocal microscopy (RCM), optical coherence tomography, multiphoton excited fluorescence imaging, and dermatofluorescence, have been extensively studied and utilized to improve the non-invasive diagnosis of skin cancer. This review article provides an analysis of the approach employed in the recently developed optical non-invasive diagnostic technologies. It explores the clinical uses of these techniques, while also examining their respective advantages and disadvantages. Furthermore, the paper explores the possibility for additional advancements in these technologies in the future.
Extracting contextual insights from user reviews for recommender systems: a novel method Madani, Rabie; Ez-Zahout, Abderrahmane; Omary, Fouzia
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 1: July 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i1.pp542-550

Abstract

Recommender systems (RS) primarily rely on user feedback as a core foundation for making recommendations. Traditional recommenders predominantly rely on historical data, which often presents challenges due to data scarcity issues. Despite containing a substantial wealth of valuable and comprehensive knowledge, user reviews remain largely overlooked by many existing recommender systems. Within these reviews, there lies an opportunity to extract valuable insights, including user preferences and contextual information, which could be seamlessly integrated into recommender systems to significantly enhance the accuracy of the recommendations they provide. This paper introduces an innovative approach to building context-aware RS, spanning from data extraction to ratings prediction. Our approach revolves around three essential components. The first component involves corpus creation, leveraging Dbpedia as a data source. The second component encompasses a tailored named entity recognition (NER) mechanism for the extraction of contextual data. This NER system harnesses the power of advanced models such as bidirectional encoder representations from transformers (BERT), bidirectional long short term memory (Bi-LSTM), and bidirectional conditional random field (Bi-CRF). The final component introduces a novel variation of factorization machines for the prediction of ratings called contextual factorization machines. Our experimental results showcase robust performance in both the contextual data extraction phase and the ratings prediction phase, surpassing the capabilities of existing state-of-the-art methods. These findings underscore the significant potential of our approach to elevate the quality of recommendations within the realm of context-aware recommender systems.
Blue-emitting fluorophosphate phosphor to enhance color rendition of near-ultraviolet LED white light Nguyen Van Dung; Nguyen Le Thai; Thuc Minh Bui; Huu Phuc Dang
Indonesian Journal of Electrical Engineering and Computer Science Vol 33, No 2: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v33.i2.pp804-811

Abstract

This work presents a novel blue phosphor, Na2MgPO4F: Eu2+ (NMPF: Eu) for violet 405-nm light-emitting diode (LED) devices. The compound is synthesized via a simple one-step sintering process using readily available precursors. Notably, NMPF: Eu exhibits highly efficient and thermally stable blue emission when excited by violet light. The NMPF: Eu is applied to produce a white LED device driven by a 405 nm LED chip and Y3Al5O12: Ce3+ (YAG: Ce) yellow phosphor. The impacts of NMPF: Eu phosphors are investigated by varying their particle size while maintaining consistent doping concentrations. Impressively, the LED prototype displays a substantial reduction in blue light emission while generating white light with enhanced color rendering and luminous properties. These results highlight the suitability and potential of NMPF: Eu as a promising phosphor for widening violet LED applications, especially in generating white light perceptible to the human eyes.
Aquaculture monitoring system using multi-layer perceptron neural network and adaptive neuro fuzzy inference system Abu Hassan Abdullah; Sukhairi bin Sudin; Fathinul Syahir Ahmad Saad; Muhamad Khairul Ali Hassan; Muhammad Imran Ahmad; Kamarul Aizat bin Abdul Khalid
Indonesian Journal of Electrical Engineering and Computer Science Vol 33, No 1: January 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v33.i1.pp71-81

Abstract

The water quality is the most important parameter for aquatic species health and growth. The condition is very critical and is essential to monitor continuously. Poor water quality will affect health, growth and ability of the animal to survive. These also affected their harvesting yields based on the amount and size of the animal. The main water parameters such dissolved oxygen (DO), pH, temperature, salinity and turbidity are monitored and control for good water quality. The data were acquired by the developed instrument and send wirelessly through GPRS/GSM module to cloud-based database. The data were retrieved and the water quality is predicted using fuzzy logic and multi-layer perceptron. MATLAB software was used for the model which is developed based on Mamdani fuzzy interface system. The membership functions of fuzzy were generated, as well as the simulation and analysis of the water quality system. Results show that the performance of fuzzy method can improve system performance in monitoring the water quality. This system also provides alert signals to farmers based on specific limit value for the water quality parameters. This will help the breeders to make certain adjustment to ensure suitable water quality for the aquaculture system.
Enhancing interaction and learning experience for deaf students through sign language translator Dian Nugraha; Safira Faizah; Mohamad Zaenudin
Indonesian Journal of Electrical Engineering and Computer Science Vol 34, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v34.i3.pp1730-1738

Abstract

The study addresses persistent communication barriers faced by students with disabilities, particularly the deaf, by exploring challenges, presenting breakthroughs, and introducing an innovative solution-a sign language translator (SLT) using motion capture technology. This groundbreaking technology, deployed through the ADDIE model and validated with user acceptance testing (UAT), successfully integrates into the learning management system (LMS) at SLB Bina Insani Depok, demonstrating its efficacy in bridging communication gaps. The results suggest a notable increase in efficiency for tasks such as t2, t3, and t5, highlighting the system’s improved ability to direct users to the LMS homepage, the SLT page, and translate words into sign language, respectively. The study suggests further development in advanced animation to enhance the learning experience for deaf students and recommends progressing toward the total communication (KOMTAL) system for comprehensive communication preparation, ultimately aiming to create an inclusive and dynamic learning platform for the holistic development of deaf students.
Revolutionizing healthcare image analysis in pandemic-based fog-cloud computing architectures Alzahraa Elsayed; Khalil Mohamed; Hany Harb
Indonesian Journal of Electrical Engineering and Computer Science Vol 34, No 1: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v34.i1.pp441-454

Abstract

Healthcare data analysis has become essential after epidemic outbreaks. The manual examination of medical images such as X-rays and computed tomography (CT) scans became one of these challenges. This paper introduces a healthcare architecture that tackles the analysis efficiency and accuracy challenges by harnessing artificial intelligence (AI) capabilities. This architecture utilizes fog computing and presents a modified convolutional neural network (CNN) designed specifically for image analysis. Different architectures of CNN layers are thoroughly explored and evaluated to optimize overall performance. To demonstrate the effectiveness of the proposed approach, a dataset of X-ray images is utilized for analysis and evaluation. Comparative assessments are conducted against recent models such as VGG16, VGG19, MobileNet, and related research papers. Notably, the proposed approach achieves an exceptional accuracy rate of 99.88% in classifying normal cases, accompanied by a validation rate of 96.5%, precision and recall rates of 100%, and an F1 score of 100%. These results highlight the immense potential of fog computing and modified CNNs in revolutionizing healthcare image analysis and diagnosis, not only during pandemics but also in the future. By leveraging these technologies, healthcare professionals can improve the efficacy and accuracy of medical image analysis, leading to improved patient care and outcomes.

Filter by Year

2012 2026


Filter By Issues
All Issue Vol 41, No 1: January 2026 Vol 40, No 3: December 2025 Vol 40, No 2: November 2025 Vol 40, No 1: October 2025 Vol 39, No 3: September 2025 Vol 39, No 2: August 2025 Vol 39, No 1: July 2025 Vol 38, No 3: June 2025 Vol 38, No 2: May 2025 Vol 38, No 1: April 2025 Vol 37, No 3: March 2025 Vol 37, No 2: February 2025 Vol 37, No 1: January 2025 Vol 36, No 3: December 2024 Vol 36, No 2: November 2024 Vol 36, No 1: October 2024 Vol 35, No 3: September 2024 Vol 35, No 2: August 2024 Vol 35, No 1: July 2024 Vol 34, No 3: June 2024 Vol 34, No 2: May 2024 Vol 34, No 1: April 2024 Vol 33, No 3: March 2024 Vol 33, No 2: February 2024 Vol 33, No 1: January 2024 Vol 32, No 3: December 2023 Vol 32, No 1: October 2023 Vol 31, No 3: September 2023 Vol 31, No 2: August 2023 Vol 31, No 1: July 2023 Vol 30, No 3: June 2023 Vol 30, No 2: May 2023 Vol 30, No 1: April 2023 Vol 29, No 3: March 2023 Vol 29, No 2: February 2023 Vol 29, No 1: January 2023 Vol 28, No 3: December 2022 Vol 28, No 2: November 2022 Vol 28, No 1: October 2022 Vol 27, No 3: September 2022 Vol 27, No 2: August 2022 Vol 27, No 1: July 2022 Vol 26, No 3: June 2022 Vol 26, No 2: May 2022 Vol 26, No 1: April 2022 Vol 25, No 3: March 2022 Vol 25, No 2: February 2022 Vol 25, No 1: January 2022 Vol 24, No 3: December 2021 Vol 24, No 2: November 2021 Vol 24, No 1: October 2021 Vol 23, No 3: September 2021 Vol 23, No 2: August 2021 Vol 23, No 1: July 2021 Vol 22, No 3: June 2021 Vol 22, No 2: May 2021 Vol 22, No 1: April 2021 Vol 21, No 3: March 2021 Vol 21, No 2: February 2021 Vol 21, No 1: January 2021 Vol 20, No 3: December 2020 Vol 20, No 2: November 2020 Vol 20, No 1: October 2020 Vol 19, No 3: September 2020 Vol 19, No 2: August 2020 Vol 19, No 1: July 2020 Vol 18, No 3: June 2020 Vol 18, No 2: May 2020 Vol 18, No 1: April 2020 Vol 17, No 3: March 2020 Vol 17, No 2: February 2020 Vol 17, No 1: January 2020 Vol 16, No 3: December 2019 Vol 16, No 2: November 2019 Vol 16, No 1: October 2019 Vol 15, No 3: September 2019 Vol 15, No 2: August 2019 Vol 15, No 1: July 2019 Vol 14, No 3: June 2019 Vol 14, No 2: May 2019 Vol 14, No 1: April 2019 Vol 13, No 3: March 2019 Vol 13, No 2: February 2019 Vol 13, No 1: January 2019 Vol 12, No 3: December 2018 Vol 12, No 2: November 2018 Vol 12, No 1: October 2018 Vol 11, No 3: September 2018 Vol 11, No 2: August 2018 Vol 11, No 1: July 2018 Vol 10, No 3: June 2018 Vol 10, No 2: May 2018 Vol 10, No 1: April 2018 Vol 9, No 3: March 2018 Vol 9, No 2: February 2018 Vol 9, No 1: January 2018 Vol 8, No 3: December 2017 Vol 8, No 2: November 2017 Vol 8, No 1: October 2017 Vol 7, No 3: September 2017 Vol 7, No 2: August 2017 Vol 7, No 1: July 2017 Vol 6, No 3: June 2017 Vol 6, No 2: May 2017 Vol 6, No 1: April 2017 Vol 5, No 3: March 2017 Vol 5, No 2: February 2017 Vol 5, No 1: January 2017 Vol 4, No 3: December 2016 Vol 4, No 2: November 2016 Vol 4, No 1: October 2016 Vol 3, No 3: September 2016 Vol 3, No 2: August 2016 Vol 3, No 1: July 2016 Vol 2, No 3: June 2016 Vol 2, No 2: May 2016 Vol 2, No 1: April 2016 Vol 1, No 3: March 2016 Vol 1, No 2: February 2016 Vol 1, No 1: January 2016 Vol 16, No 3: December 2015 Vol 16, No 2: November 2015 Vol 16, No 1: October 2015 Vol 15, No 3: September 2015 Vol 15, No 2: August 2015 Vol 15, No 1: July 2015 Vol 14, No 3: June 2015 Vol 14, No 2: May 2015 Vol 14, No 1: April 2015 Vol 13, No 3: March 2015 Vol 13, No 2: February 2015 Vol 13, No 1: January 2015 Vol 12, No 12: December 2014 Vol 12, No 11: November 2014 Vol 12, No 10: October 2014 Vol 12, No 9: September 2014 Vol 12, No 8: August 2014 Vol 12, No 7: July 2014 Vol 12, No 6: June 2014 Vol 12, No 5: May 2014 Vol 12, No 4: April 2014 Vol 12, No 3: March 2014 Vol 12, No 2: February 2014 Vol 12, No 1: January 2014 Vol 11, No 12: December 2013 Vol 11, No 11: November 2013 Vol 11, No 10: October 2013 Vol 11, No 9: September 2013 Vol 11, No 8: August 2013 Vol 11, No 7: July 2013 Vol 11, No 6: June 2013 Vol 11, No 5: May 2013 Vol 11, No 4: April 2013 Vol 11, No 3: March 2013 Vol 11, No 2: February 2013 Vol 11, No 1: January 2013 Vol 10, No 8: December 2012 Vol 10, No 7: November 2012 Vol 10, No 6: October 2012 Vol 10, No 5: September 2012 Vol 10, No 4: August 2012 Vol 10, No 3: July 2012 More Issue