cover
Contact Name
Prof. Dr. Semin
Contact Email
seminits@gmail.com
Phone
+6283856825999
Journal Mail Official
ijmeirjournal@gmail.com
Editorial Address
Department of Marine Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember Surabaya Indonesia
Location
Kota surabaya,
Jawa timur
INDONESIA
International Journal of Marine Engineering Innovation and Research
ISSN : 25415972     EISSN : 25481479     DOI : ttp://dx.doi.org/10.12962/j25481479
International Journal of Marine Engineering Innovation and Research (IJMEIR) is an open-access journal, which means that visitors all over the world could publish, read, download, cite and distribute papers published in this journal for free of cost. IJMEIR journal has a vast group of visitors, a far-reaching impact and pretty high citation. IJMEIR adopts a peer-review model, which insured fast publishing and convenient submission. IJMEIR now cordially inviting you to contribute or recommend quality papers to us. This journal is geared towards the dissemination of original innovation, research and practical contributions by both scientists and engineers, from both academia and industry. Theses, dissertations, research papers, and reviews associated with all aspects of marine engineering, marine sciences, and marine technology are all acceptable for publication. International Journal of Marine Engineering Innovation and Research (IJMEIR) focus and scopes are preserve prompt publication of manuscripts that meet the broad-spectrum criteria of scientific excellence. Areas of interest include, but are not limited to: Automotive Biochemical Biology Biomedical science Biophysics and biochemistry Chemical Chemistry Combat Engineering Communication Computer science Construction Energy Energy storage Engineering geology Enterprise Entertainment Environmental Environmental Engineering Science Environmental Risk Assessment Environmental technology Financial Engineering Fire Protection Engineering Fisheries science Fishing Food Science and Technology Health Care & Public Health, Health Safety Health Technologies Industrial Technology Industry Business Informatics Machinery Manufacturing Marine Engineering Marine sciences Marine technology Marine biology Marine economic Marine engines Marine fisheries Marine fuel Marine geology Marine geophysic Marine management Marine oil and gas Marine policy Material sciences Materials science and engineering Mathematics Mechanics Medical Technology Metallurgical Micro-technology Military Ammunition Military Technology Military Technology and equipment Mining Motor Vehicles Naval Engineering Neuroscience Nuclear technology Ocean Robotics and Automation Safety Engineering Sanitary Engineering Space Technology Statistics Traffic Transport Visual Technology
Articles 14 Documents
Search results for , issue "Vol 1, No 4 (2017)" : 14 Documents clear
The Study of the Application of Hybrid Propulsion System on OPV with Controllable Pitch Propellers Eddy Setyo Koenhardono; . Amiadji; Rahmat Kristomi
International Journal of Marine Engineering Innovation and Research Vol 1, No 4 (2017)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4840.035 KB) | DOI: 10.12962/j25481479.v1i4.2735

Abstract

As a patrol ship, the offshore patrol vessel (OPV) 80 m has an operational profile consisting several conditions: loitering (10 knots), patrol (18 knots), and interception (22 knots). Applying diesel mechanical propulsion system, load factor of each OPV 80 m’s main engine during loitering (10 knots) and patrol (18 knots) conditions in sequence is just about 7% and 49.54%. The load factor permitted by the engine maker ranges between (60% ~ 90%) MCR, however. By applying hybrid propulsion system, the load factor of the OPV 80 m’s shaft motor during loitering condition is 87.26% while the load factor of its main engine during patrol and interception conditions becomes 62.10% and 89.949%.In terms of economical aspects, for 30 years of operation period of OPV 80 m, total of present values of hybrid application is significantly much lower than of diesel mechanical application, with the difference between them is IDR 579.205.295.632,-.
Effect of Water Fuel Emulsion on Performance and NOx Emissions of Diesel Engine Beny Cahyono; Aguk Zuhdi Muhammad Fathallah; . Semin; Nauval Pahlevi
International Journal of Marine Engineering Innovation and Research Vol 1, No 4 (2017)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (565.34 KB) | DOI: 10.12962/j25481479.v1i4.2055

Abstract

NOx as one of the exhaust emissions is harmful to human health. Many methods can reduce NOx emissions, one of them is water in fuel emulsion. By using experiment, research has been conducted in surfactant selection. The results of experiment show 4 surfactant, which is best used to the diesel engine is tween 80 and span 80. This experiment needs some water contents variation emulsifier with 10%, 15%, and 20%. In this different variation of water is very influential on performance and NOx emissions. By using water fuel emulsion of 10% in SFOC has been increase 216,2 g/Kwh or 11.6% compared to Pertamina Dex of fuel.  However, the water used in fuel emulsion of 15% and 20% in SFOC increased to compare 10% emulsion. The effect of water use in fuel emulsion has been reduce NOx emission. Water in fuel emulsion has been decrease 50.5%. Generally, the emission level of a  diesel engine that using water in fuel emulsion has been improved until entering on Tier 3 specification of IMO rules
Technical-Economic Analysis of Photovoltaik Reverse Osmosis Planning for Fulfillment of Fresh Water System on Ro-Pax Ship Edi Jadmiko; Tony Bambang Musriyadi; . Amiadji; Dian Nafi Ahmad
International Journal of Marine Engineering Innovation and Research Vol 1, No 4 (2017)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1105.003 KB) | DOI: 10.12962/j25481479.v1i4.2633

Abstract

The need for fresh water in the world of industry is increasing with the rapid development of the global industry. The shipping industry is having a significant impact as part of a global industry concerning the sector of freshwater demand on ships. Freshwater supplies on ro-pax vessels are very important because they are the source of crew and passenger life when ships sail. Fulfillment of freshwater needs on a ro-pax vessel is made in a conventional system by filling clean water into a freshwater tank from the port. In this final project will be analyzed technical and economical on designing fresh water system using reverse osmosis system with solar panel as power supply and compare it with conventional system on ship KM. SABUK NUSANTARA 56. This Final Project includes installation design, size of fresh water tank, amount of cargo, investment cost and operational cost. The conclusion obtained in this final project is a reverse osmosis (RO) system with solar panels as a very efficient power supply when applied to ro-pax ships such as ships KM SABUK NUSANTARA 56 because with this system the ship is able to produce their own fresh water, the size of the freshwater tank is smaller, for new shiploads can be increased. For the percentage of total cost of fresh water needs is dearer about 52 percent compared to conventional system and payload value increased 29.2 percent compared to conventional system.
Development of Load Characteristic for The Main Engine and Its PLC Compatible Preparation in Cooperation with The Water Brake as The Generator Mathias Markert; Hartmut Schmidt; Muhammad Faiz Rifqi Ardyatama
International Journal of Marine Engineering Innovation and Research Vol 1, No 4 (2017)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (854.418 KB) | DOI: 10.12962/j25481479.v1i4.2705

Abstract

Water brake can be used in any application where a load brake is required on a rotational load. In the engine industry, dynamometer is used in conjunction with a power source and instrumentation to determine engine HP, Torque, and Efficiency ratings with a high degree of accuracy. Water brake are proven durable designs which use water flowing through the absorber to create a load on the engine. Only the amount of water necessary to provide the load is required.Precise load control of the dynamometer is as simple as increasing or decreasing water volume flowing through the dynamometer absorption body. The controls ensure engine load remains stable throughout the duration of the test cycle. Torque, horsepower, RPM, and water temperature are displayed on highly accurate digital instrumentation.Computers can perform both sequential control and feedback control, and typically a single computer will do both in an industrial application. Programmable logic controllers are a type of special purpose microprocessor that replaced many hardware components such as timers and drum sequencers used in relay logic type systems. They can also analyze data and create real time graphical displays for operators and run reports for operators, engineers and management.Industrial control systems are usually used in all over in control system. A distributed control system refers to a control system in which the controllers are spread throughout the system and connect by networks. Smaller automation applications can be implemented with programmable logic controllers.This thesis basically is about designing a programmable logic controller compatible for dynamometer to control speed, power and torque of main engine. To test engine performance in the laboratory, the engine is coupled to a dynamometer. In this thesis dynamometer are used to measure speed, power and torque. One of the most essential role of the control engineer is tuning of controller. Hence the performance of the calculated controller parameters depends on the correctness of the identified process model developed from engine behavior.

Page 2 of 2 | Total Record : 14