cover
Contact Name
Laelatul Qodaryani
Contact Email
jsdlbbsdlp@gmail.com
Phone
+6285641147373
Journal Mail Official
jsdlbbsdlp@gmail.com
Editorial Address
Balai Besar penelitian dan Pengembangan Sumberdaya Lahan Pertanian (BBSDLP) Jln. Tentara Pelajar no 12, kampus Penelitian Pertanian Cimanggu, Ciwaringin, Bogor Tengah, Kota Bogor, Jawa Barat 16114
Location
Kota bogor,
Jawa barat
INDONESIA
Jurnal Sumberdaya Lahan
Core Subject : Agriculture,
Jurnal ini memuat artikel tinjauan (review) mengenai hasil-hasil penelitian yang telah diterbitkan, dikaitkan dengan teori, evaluasi hasil penelitian lain, dengan atau mengenai kebijakan. Ruang lingkup artikel tinjauan ini meliputi bidang: tanah, air, iklim, lingkungan pertanian, perpupukan dan sosial ekonomi sumberdaya lahan.
Articles 173 Documents
THE ROLE OF LAND CONSERVATION IN PLANTATION MANAGEMENT IDJUDIN, A ABAS
Jurnal Sumberdaya Lahan Vol 5, No 2 (2011)
Publisher : Indonesian Center for Agriculture Land Resource Development

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (161.526 KB) | DOI: 10.21082/jsdl.v5n02.2011.%p

Abstract

The main problem of agricultural activities in the steep slope upland area if without adequate soil conservation practices is that it will results in soil erosion. Soil erosion causes agricultural land degradation which reduces the physical, chemical, and biological soil roperties and decreases land productivities. Soil erosion is very harmful to agricultural land productivities, because loss of the fertile topsoil in a relatively short time causes decrease of fertility and productivity of the soils. The role of conservation techniques are the way of soil conservation, which have three principles of definitions, i.e. a) to protect the soil against soil degradation, b) to improve the degraded soil, and c) to make the soil more fertile. Soil conservation practice in the field have used two methods i.e. mechanical conservation methods and vegetative conservation methods. Mechanical conservation method is the earth embankments constructed across the slope to intercept surface run off and to protect soil erosion (soil cultivation along the contour, terraces constructed, contour bank, waterways ditch, drop structure, silt pit, checkdam, gully plug, etc). While the vegetative methode are reducing the kinetic energy of the raindrops on the soil surface, reducing the run off velocity, increasing infiltration rate and reducing soil water contents. The effectiveness of soil conservation techniques in uplands area on the the soil erosion and the land productivity is different in each location. This is because of the difference of the land capability (site specific, soil behavior and properties, and the climate). Farmers? motivation as the user of the soil conservation technologies is included as one on the determinant factors of the successfulness in improving degraded upland and in increasing land productivity.
Land Resource Potential for Agricultural Commodity Development in West Kalimantan Province . HIKMATULLAH; NONO SUTRISNO; ACHMAD HIDAYAT
Jurnal Sumberdaya Lahan Vol 2, No 1 (2008)
Publisher : Indonesian Center for Agriculture Land Resource Development

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (250.83 KB) | DOI: 10.21082/jsdl.v2n1.2008.%p

Abstract

West Kalimantan province with total areas of 14.64 million ha has already had spatial database of land resources at scale of 1:250,000 resulted from reconnaissance soil mapping (2004-2007). This database can be used for composing agricultural planing at province level. The area is composed of wetland ecosystem which covers 3,659,736 ha (24.99%), drylands with <15% slopes covers 4,356,790 (29.74%) and >15% slopes covers 6,441,956 ha (44.0%). The coverage of existing landuse for agriculture is only about 13.85% of the total area. In general, the area belongs to wet climate with average annual rainfall varies from 2,663 to 4,191 mm, and belongs to A, B1, and C agroclimatic zones. The area has various kinds of parent materials consisting of alluvium, organic matter deposit, old volcanic rocks, intrusive rocks, sedimentary rocks and metamorphic rocks that formed soil orders of Histosols, Entisols, Inceptisols, Spodosols, Ultisols, and Oxisols, which give variation in their properties. The result of the land resource potential analysis for agricultural commodity development is directed to: (a) land intensification for rice fields covers about 221,381ha, upland food crops (maize, upland rice, legumes, tuber crops) covers 173,581 ha, annual or estate crops (rubber, oil palms, coconut, pepper, and coffea) including fruit crops covers 570,266 ha, and for brackish fishpond covers 7,394 ha, and (b) land extensification for rice fields covers 869,133 ha, upland food crops 1,316,058 ha, estate crops (oil palm, rubber, coconut, pepper, coffea) covers 3,098,269 ha (as first priority at 15-25% slopes) and 1,300,374 ha (as second priority at 25-40% slopes), and for brackish fishponds covers 25,437 ha. The availability of spatial land resource information to develop high economic value of agricultural commodities, especially estate crops, would support establishing growth centre of agribusiness and agroindustry in the area.
Residu Jerami Padi untuk Meningkatkan Produktivitas Tanah Sulfat Masam Berkelanjutan Ani Susilawati; Dedi Nursyamsi
Jurnal Sumberdaya Lahan Vol 7, No 1 (2013)
Publisher : Indonesian Center for Agriculture Land Resource Development

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (679.981 KB) | DOI: 10.21082/jsdl.v7n1.2013.%p

Abstract

Abstrak. Lahan pasang surut sulfat masam baik aktual maupun potensial cukup luas sebarannya di tanah air sehingga berpotensi untuk perluasan pertanian. Kemasaman tanah, rendahnya ketersediaan hara, dan keracunan besi adalah kendala tanah utama yang sering menghambat pertumbuhan tanaman di tanah ini. Pengelolaan bahan organik adalah salah satu komponen teknologi penting untuk meningkatkan produktivitas tanah sulfat masam yang berkelanjutan. Makalah ini memaparkan potensi residu jerami padi sebagai sumber hara dan amelioran yang mampu meningkatkan produktivitas tanah sulfat masam berkelanjutan. Penggunaan residu jerami padi mempunyai peran yang sangat penting dalam meningkatkan produktivitas tanah sulfat masam karena residu jerami padi dapat menjadi sumber hara tanaman, meningkatkan efisiensi pemupukan P, dan mengurangi tingkat keracunan Fe. Penggunaan residu jerami padi dapat meningkatkan produksi padi sawah pada tanah sulfat masam. Bila residu jerami padi ini dikombinasikan dengan komponen teknologi lainnya seperti penggunaan decomposer trichoderma, varietas padi tahan keracunan besi (IR 66 dan Margasari), dan biofilter di saluran air masuk maka hasil tanaman padi akan lebih tinggi.Abstract. Large amount of acid sulfate soil area both actual and potential acid sulfate soil in Indonesia is potential for agriculture development. Soil acidity, low nutrient availability, and iron toxicity are some constrains that often limit plant growth in the soils. Organic matter management is one of the important technologies to increase sustainable acid sulfate soil productivity. This paper discuses the potency of rice straw residues as a source of nutrients and ameliorant that are able to increase sustainable acid sulfate soil productivity. The use of rice straw residue is a very important role in increasing acid sulfate soil productivity because it could be a source of plant nutrients, improve efficiency of P fertilizer, and reduce Fe toxicity. The use of rice straw residues can increase rice production at acid sulfate soil. If the rice straw residue is combined with other component of technologies, such as the use of decomposer of trichoderma, planting rice variety that is resistant to iron toxicity (IR 66 and Margasari), and a the use of biofilter in the inlet canal, the rice production would be higher.
Pembenah Tanah untuk Meningkatkan Produktivitas Lahan Pertanian Ai Dariah; S. Sutono; Neneng L. Nurida; Wiwik Hartatik; Etty Pratiwi
Jurnal Sumberdaya Lahan Vol 9, No 2 (2015)
Publisher : Indonesian Center for Agriculture Land Resource Development

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (524.612 KB) | DOI: 10.21082/jsdl.v9n2.2015.%p

Abstract

Abstrak. Pembenah tanah (soil conditioner) dapat digunakan untuk mempercepat pemulihan kualitas tanah. Tulisan ini menguraikan prinsip pemanfaatan pembenah tanah, jenis dan klasifikasi pembenah tanah, fungsi utama dan efek pembenah tanah terhadap kualitas tanah dan produktivitas tanaman, pengembangan pembenah tanah untuk pemulihan lahan pertanian, serta peluang dan kendala pengembangan pembenah tanah. Penggunaan pembenah tanah utamanya ditujukan untuk memperbaiki kualitas fisik, kimia, dan/atau biologi tanah, sehingga produktivitas tanah menjadi optimum. Pembenah tanah ada yang bersifat alami maupun buatan (sintetis). Berdasarkan senyawa atau unsur pembentuk utamanya, pembenah tanah bisa dibedakan sebagai pembenah tanah organik, hayati, dan mineral. Penggunaan pembenah tanah yang bersumber dari bahan organik sebaiknya menjadi prioritas utama, selain terbukti efektif dalam memperbaiki kualitas tanah dan produktivitas lahan, juga bersifat terbarukan, insitu, dan relatif murah, serta bisa mendukung konservasi karbon dalam tanah. Kelemahannya adalah dibutuhkan dalam dosis relatif tinggi. Beberapa pembenah mineral juga efektif dalam meningkatkan kualitas tanah, namun tetap harus disertai dengan penggunaan pembenah tanah organik. Penggunaan pembenah tanah sintetik perlu diuji terlebih dahulu dari segi dampak negatifnya terhadap lingkungan, selain pertimbangan harga yang umumnya relatif mahal, meski dosis yang digunakan relatif rendah.Abstract. Soil conditioner can be used to improve the recovery of soil quality. This paper mainly discuss on the use of soil conditioner, type and classification, function and its effect on soil quality and crop productivity, as well as the potency and challenge of using soil conditioner for recovery of the degraded agricultural land. The main role of soil conditioner is to improve soil physical, chemical and biological conditions and to provide optimum condition for soil productivity. There are natural and synthetic soil conditioners. Based on its component, they can be grouped as organic, biologic and mineral soil conditioner. The use of organic soil conditioner is strongly recommended as it proven very effective in improving soil quality and land productivity. Other benefits in using organic soil conditioner are their properties such as renewable, available in situ, and relatively less expensive. It also can support the conservation of carbon in the soil, but has the weakness associated with the high application rate. Some mineral soil conditioner is also effective in improving soil quality unless it’s combined organic soil conditioner. The use of synthetic soil conditioner should be evaluated for its negative impact on the environment prior to application and for its relatively expensive, although it is used at relatively low doses.
Pesticide Residue Monitoring on Agriculture in Indonesia Asep Nugraha Ardiwinata; Lin Nuriah Ginoga; Eman Sulaeman; Elisabeth Srihayu Harsanti
Jurnal Sumberdaya Lahan Vol 12, No 2 (2018)
Publisher : Indonesian Center for Agriculture Land Resource Development

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (627.591 KB) | DOI: 10.21082/jsdl.v12n2.2018.133-144

Abstract

Abstract. Most agricultural producers use pesticides to prevent pests and increase yield and quality of the food they grow. Pesticides can damage people’s health, and lead to birth defects (teratogenic in character) and death in humans and animals. Many of these chemical residues, especially derivatives of organochlorine pesticides, demonstrate dangerous bioaccumulation levels in the body and environment. The problems caused by organochlorine residues (lindan, aldrin, dieldrin, endrin, heptachlor and DDT) on agricultural lands that are still found today are generally the consequence of past usage that dates back to the1960s. Research on pesticide residues in Indonesia was carried out several years ago by various research institutes and universities and some of these results were collected between 1985 and 2017. Data distribution of the results on pesticide residues include in Aceh, North Sumatra, West Sumatra, Jambi, Bengkulu, Lampung, Banten, Jakarta, West Java, Central Java, East Java, Yogyakarta, Bali, South Kalimantan, North Sulawesi, South Sulawesi, Gorontalo, Maluku, and Papua. Most of the pesticide residue research has been conducted on vegetables. Pesticide residues were found in various commodities and matrices such as rice, soybeans, cow's milk, chicken eggs, fruit ingredients, vegetables, soil, paddy water, river water, lake water, pond water, sea water, water birds, animal feed, fish, frogs, lamb, birds, eggs, tea, and honey. Pesticide residues found were insecticide (organochlorine, organophosphate, carbamate, pyrethroid), and fungicide (dimethomorp, fenobucarb, propineb, benomyl, carbendazim and thiametoxam). Organochlorine insecticides have been banned, but the residues are still found today. This is due to the nature of organochlorines which have high persistence properties. Even though insecticide residues (organophosphate, carbamate, pirethroid) found in food commodities are still below the maximum residual limit (MRL), namely SNI 7313: 2008, but some close to MRL. Particularly for organochlorine residues in soil, water and plants insecticides must be monitored because they are persistent, toxic and accumulative. This paper aims to review of pesticide residues in various products including food, and the potential impact of pesticide residues on human health. Abstrak. Sebagian besar produsen pertanian menggunakan pestisida untuk mencegah hama dan meningkatkan hasil dan kualitas makanan yang mereka tanam. Pestisida dapat merusak kesehatan manusia, dan bersifat teratogenik dan mematikan pada manusia dan hewan. Banyak dari residu kimia ini, terutama turunan pestisida organoklorin, menunjukkan tingkat bioakumulasi yang berbahaya dalam tubuh manusia dan lingkungan. Masalah tersebut disebabkan oleh residu organoklorin (lindan, aldrin, dieldrin, endrin, heptachlor dan DDT) yang digunakan sejak tahun 1960-an. Penelitian tentang residu pestisida di Indonesia dilakukan beberapa tahun yang lalu oleh berbagai lembaga penelitian dan universitas yang dikumpulkan antara tahun 1985 dan 2017. Distribusi data hasil residu pestisida tersebar di Aceh, Sumatera Utara, Sumatera Barat, Jambi, Bengkulu, Lampung, Banten, Jakarta, Jawa Barat, Jawa Tengah, Jawa Timur, Yogyakarta, Bali, Kalimantan Selatan, Sulawesi Utara dan Selatan, Gorontalo, Maluku, dan Papua. Penelitian yang telah dilakukan menemukan residu pestisida tidak hanya ditemukan di berbagai komoditas pertanian seperti beras, kedelai, susu sapi, telur ayam, bahan buah, sayuran tetapi juga pada tanah, sawah, air sungai, air danau, air kolam, air laut, burung air, pakan ternak, ikan, katak, domba, telur burung, teh, dan madu. Residu pestisida yang banyak ditemukan di lapangan adalah insektisida (organoklorin, organofosfat, karbamat, piretroid), dan fungisida (dimethomorp, fenobucarb, propineb, benomyl, carbendazim dan thiametoxam). Insektisida golongan organoklorin telah dilarang penggunaannya, namun residunya masih ditemukan hingga kini. Hal ini dikarenakan sifat organoklorin yang memiliki sifat persistensi yang tinggi. Residu insektisida (organofosfat, karbamat, piretroid) yang ditemukan di dalam komoditas pangan secara umum masih di bawah batas maksimum residu (BMR) yang mengacu pada standar nasional, yaitu SNI 7313: 2008, namun beberapa residu insektisida telah mendekati BMR. Khusus untuk residu insektisida golongan organoklorin di dalam tanah, air dan tanaman harus dipantau karena sifatnya yang persisten, beracun, dan akumulatif. Makalah ini bertujuan untuk mengkaji residu pestisida dalam berbagai produk termasuk makanan, dan dampak potensial residu pestisida pada kesehatan manusia.
Increasing the Production Capacity of Upland Food Crops ANNY MULYANI; ACHMAD HIDAYAT
Jurnal Sumberdaya Lahan Vol 3, No 2 (2009)
Publisher : Indonesian Center for Agriculture Land Resource Development

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (118.127 KB) | DOI: 10.21082/jsdl.v3n2.2009.%p

Abstract

Upland agriculture plays an important role in producing various kinds of food crops. However, data of the annual upland crops areas that are needed as a basis for area extensification planning is not available. Therefore land area of 10 commodities of annual upland crops was estimated based on its comparison with paddy field areas, with the assumption of cropping index of 100 (one crop per year). For example, upland area planted to maize is assumed 60% of the total harvested area of maize, because the remaining 40% is produced in paddy field areas. Based on these predictions, the upland areas planted to 10 food crops is only about 5.53 million ha or 37.7% of the total annual upland agriculture area of 14.6 million ha. To evaluate the production capacity of the upland areas, we grouped those areas based on soil fertility and potential yield for each commodity. The results indicate that if the 5.53 million ha upland areas are used optimally for food crop production, it can produce 2.82 million tons of unhusked upland rice, 9.15 million tons of corn grain, 0.23 million tons of soybean grain, 0.73 million tons of peanuts pods, 0.20 million tons of mungbeans, 20.81 million tons of cassava, 0.58 million tons of sweet potato, 1.0 million tons of potatoes, 0.21 million tons of shallots and 1.3 million tons of sugarcane. If in the coming year, the total area of upland can be increased gradually from 37.7% to 70% of the total available annual upland areas, i.e. to about 10.2 million ha, thus the upland crops production capacity will increase to 4.9 million tons of upland rice , 16.2 million tons of corn, 0.4 million tons of soybeans, 1.5 million tons of peanuts, 0.35 million tons of mungbeans, 37.3 million tons of cassava, one million tons of sweet potatoes, 1.8 million tons of potato, 0.27 million tons of shallots and 2 million tons of sugarcane. By increasing the upland areas of about 5 million, it will lead to the national selfsufficiency of most commodities until the year of 2050, except for soybeans, potatoes and shallots. Therefore, to maintain selfsufficiency in rice and maize , as well as promote self-sufficiency of other food crop production, the extensification of upland agricultural areas for food crops is a prerequisite.
Cover JSL Vol.8(3) 2014 Jurnal Sumberdaya Lahan
Jurnal Sumberdaya Lahan Vol 8, No 3 (2014): Edisi Khusus
Publisher : Indonesian Center for Agriculture Land Resource Development

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (812.966 KB) | DOI: 10.21082/jsdl.v8n3.2014.%p

Abstract

Cover JSL Edisi Khusus
Potensi Sumberdaya Lahan Pulau Sulawesi Mendukung Peningkatan Produksi Padi, Jagung, dan Kedele Hikmatullah Hikmatullah; Erna Suryani
Jurnal Sumberdaya Lahan Vol 8, No 3 (2014): Edisi Khusus
Publisher : Indonesian Center for Agriculture Land Resource Development

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1521.617 KB) | DOI: 10.21082/jsdl.v8n3.2014.%p

Abstract

Abstrak. Program survei dan pemetaan tanah tingkat tinjau skala 1:250.000 di Indonesia telah selesai dilaksanakan, yang ditandai dengan diterbitkannya peta-peta tanah tersebut edisi-1 tahun 2012 untuk setiap provinsi di Kalimantan, Sulawesi, Kepulauan Maluku, Kepulauan Nusa Tenggara, Jawa, dan Papua Barat. Dari legenda peta tanah dapat diperoleh informasi keadaan iklim, landform dan bahan induk, bentuk wilayah dan lereng, jenis dan sifat-sifat tanah, yang menentukan potensi sumberdaya lahan untuk pengembangan pertanian. Pulau Sulawesi (18,72 juta ha) beriklim basah sampai kering yang dicerminkan oleh rejim kelembaban tanah udik, ustik dan akuik. Landform utama dari yang terluas penyebarannya adalah Tektonik (37,63%), Volkanik (37,39%), Aluvial (11,82%), Karst (8,31%), Marin (2,65%), Fluvio-marin (0,41%), dan Gambut (0,13%). Bentuk wilayah bervariasi dari datar sampai bergunung, dengan komposisi datar sampai agak datar (15,85%), berombak (4,86%), bergelombang (6,50%), berbukit kecil (11,96%), berbukit (19,30%) dan bergunung (39,85%). Bahan induk tanah sangat bervariasi, terdiri atas endapan bahan organik, aluvium, batuan sedimen masam sampai basis, batuan volkan muda sampai tua, batuan intrusi masam sampai basis, dan batuan metamorfik. Bahan induk tersebut membentuk 9 ordo tanah, berturut-turut dari yang terluas penyebarannya adalah Inceptisols (58,15%), Alfisols (10,44%), Ultisols (10,25%), Mollisols (6,215%), Entisols (5,54%), Oxisols (4,87%), Andisols (2,18%), Histosols (0,41%) dan Vertisols (0,28%). Berdasarkan data biofisik lahan tersebut di Sulawesi terdapat lahan potensial luas terdiri atas lahan basah berlereng <3% seluas 2,30 juta ha untuk pengembangan padi sawah, dan lahan kering berlereng 3-15% seluas 1,98 juta ha untuk pengembangan jagung dan kedelai. Kondisi aktual sebagian besar lahan potensial tersebut telah dimanfaatkan untuk pertanian, sehingga peningkatan produksi ketiga komoditas tersebut lebih berpeluang dilakukan melalui optimalisasi atau intensifikasi lahan dibandingkan dengan ekstensifikasi. Apabila diasumsikan 50% lahan basah potensial dapat ditanami padi dua kali setahun dengan rata-rata produksi untuk Sulawesi 4,71 t ha-1, maka akan diperoleh 10,82 juta ton GKG. Dan juga apabila 50% lahan kering potensial dapat ditanami jagung dan kedele sekali setahun dengan produktivitas masing-masing 4,05 t ha-1 dan 1,34 t ha-1, maka akan diperoleh produksi 4,02 juta ton jagung pipil kering dan 1,33 juta ton kedele biji kering. Apabila dibandingkan dengan data produksi dari ketiga komoditas bahan pangan tersebut menurut BPS tahun 2012 (padi 7,82, jagung 2,94, dan kedele 0,05 juta ton), maka terdapat kenaikan produksi yang sangat signifikan untuk padi, jagung dan kedele berturut-turut 38,4 %, 36,7% dan 2461,4%.Abstract. The reconnaissance soil survey and mapping programme at scale of 1: 250,000 in Indonesia has been successfully completed, marked by publication of the soil maps in 2012 for each province in Kalimantan, Sulawesi, Maluku, Nusa Tenggara, Java, and West Papua. From the soil map legends, it can be obtained the information of climate condition, landform, relief an slopes, type and properties of soils that affect land resource potential for agricultural development purpose. The island of Sulawesi (18.7 million ha) has variation of climate condition from wet to dry, which is reflected by udic, ustic and aquic soil moisture regimes. The main landform groups, from the most extensive respectively consists of Tectonic (37.63%), Volcanic (37.39%), Alluvial (11.82%), Karst (8.31%), Marine (2.65%), Fluvio-Marine (0.41%), and Peatland (0.13%). The relief varies from flat to mountainous, with composition of flat to nearly flat (15.85%), undulating (4.86%), rolling (6.50%), hillocks (11.96%), hilly (19.30%), and mountainous (39.85%). The soil parent materials are vary, which composed of organic and alluvium deposits, acid to basic sedimentary rocks, young and old volcanic rocks, acid to basic intrusive rocks, and metamorphic rocks. Nine soil orders were formed from these parent materials, namely from the most extensive respectively Inceptisols (58.15%), Alfisols (10.44%), Ultisols (10.25%), Mollisols (6.21%), Entisols (5.54%), Oxisols (4.87%), Andisols (2.18%), Histosols (0.41%) and Vertisols (0.28%). Based on the biophysical data, there are large potential lands in Sulawesi, consisting of wetland soils with slope of <3% covers about 2.30 million ha for ricefield (sawah), and dryland soils with slopes of 3-15% covers about 1.98 million ha for maize and soybean development. Actually, the most of land potential have been cultivated for various agricultural crops. Therefore, the increasing production of paddy rice, maize and soybean have more opportunity to optimalize or intensify the use of existing agricultural land rather than to land extensification. By assumption, if 50% of the potential wetland is cultivated with paddy twice a year with mean productivity of 4,71 t ha-1, then it would get about 10.82 Mt GKG (dry unhulled rice). And also, if 50% of the potential dryland soils is cultivated with maize and soybean at least one time a year with mean productivity of 4,05 t ha-1 and 1,34 t ha-1 respectively, then it would get about 4.02 Mt dry grain corn, and 1.33 Mt dry grain soybean. Compared to the existing production of the three food crops according to BPS in 2012 (paddy 7.82, maize 2.94, and soybean 0.05 Mt), there are very significant increasing production for paddy, maize and soybean as much as 38.4%, 36.7%, and 2461.5% respectively.
Penggunaan Prakiraan Musim untuk Pertanian di Indonesia: Status Terkini dan Tantangan Kedepan Yeli Sarvina; Elza Surmaini
Jurnal Sumberdaya Lahan Vol 12, No 1 (2018)
Publisher : Indonesian Center for Agriculture Land Resource Development

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1272.08 KB) | DOI: 10.21082/jsdl.v12n1.2018.33-48

Abstract

Prakiraan musim sangat penting dalam pengambilan keputusan usaha tani karena variabilitas iklim yang semakin meningkat sebagai dampak dari perubahan iklim. Prakiraan musim memiliki potensi untuk bisa membantu pengambil kebijakan dan keputusan pertanian. Kajian empirik dan literatur serta kuantifikasi nilai ekonomi pemanfaatan prakiraan iklim di Indonesia untuk pertanian masih sangat terbatas. Tulisan ini merupakan tinjauan mengenai pemanfaatan prakiraan musim dalam sistem usahatani, perkembangan terkini prakiraan musim, nilai ekonomi prakiraan musim, kendala dan tantangan ke depan. Kajian nilai ekonomi prakiraan musim untuk pertanian masih belum banyak dilakukan, kuantifikasi manfaat prakiraan musim sangat penting untuk meyakinkan pengambil kebijakan atau petani bahwa prakiraan musim memberikan manfaat bagi pertanian. Prakiraan musim masih sulit dipahami oleh petani bahkan penyuluh. Beberapa user interface telah dikembangkan untuk memudahkan memanfaatkan prakiraan musim untuk pertanian. Peningkatan akurasi prakiraan musim ke depan harus menjadi prioritas pembangunan pertanian dan merupakan salah satu investasi penting dalam adaptasi variabilitas dan perubahan iklim. Peningkatan akurasi prakiraan musim sangat tergantung pada kapasitas sumber daya manusia serta sarana pendukung seperti sistem pemantauan dan pengamatan data iklim, pengembangan model prakiraan musim .Pengembangan berbagai user interface yang lebih mudah dipahami dan diaplikasikan oleh petani harus dilakukan
The Dynamics Surface Adsorption of Fe Oxide-Humic Substance Complexes ARIFIN FAHMI
Jurnal Sumberdaya Lahan Vol 5, No 2 (2011)
Publisher : Indonesian Center for Agriculture Land Resource Development

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (482.776 KB) | DOI: 10.21082/jsdl.v5n2.2011.%p

Abstract

Iron (Fe) oxide is the most abundant metallic oxides in the soils, it is highly reactive so that it has a huge influence on the dynamics of chemical balance in the soil both in terms soil fertility and environmental decontamination from toxic metal. Naturally, the surface of Fe oxide is coated with organic substances in the form of complexes compound, this condition may influence on its reactivity and retention capacity to ions in the soil solution. The presence of humic substances may increase or decrease the adsorption capacity of Fe oxide in which the complexes adsorption capacity is highly dependent on some environmental factors. Complexes formation of Fe oxide – humic substances increase cation adsorption esspecially in very acid condition. Ionic strength tends to influence on cation adsorption only at basic pH condition and the increasing of ionic strength is increased cation adsorption by complexes. Adsoption processes is also influenced by concentration, molecule weight dan type of adsorbent and adsorbate material. The presence of competition between ions and blocking process on adsorption process decreases a number of sorbed ion.

Page 9 of 18 | Total Record : 173