cover
Contact Name
bernadeta subandini astuti
Contact Email
bernadeta.palguno@gmail.com
Phone
+6222-7213793
Journal Mail Official
ijog@bgl.esdm.go.id
Editorial Address
Jl. Diponegoro No. 57 Bandung, Indonesia
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal on Geoscience
The spirit to improve the journal to be more credible is increasing, and in 2012 it invited earth scientists in East and Southeast Asia as well as some western countries to join the journal for the editor positions in the Indonesia Journal of Geology. This is also to realize our present goal to internationalize the journal, The Indonesian Journal on Geoscience, which is open for papers of geology, geophysics, geochemistry, geodetics, geography, and soil science. This new born journal is expected to be published three times a year. As an international publication, of course it must all be written in an international language, in this case English. This adds difficulties to the effort to obtain good papers in English to publish although the credit points that an author will get are much higher. This Journal publishes 3 numbers per year at least 15 articles. It is a challenge for the management of the journal to remain survive and at the same time continuously maintain its quality and credibility in spite of those various constraints. Fortunately, this effort is strongly supported by the Geological Agency of Indonesia, as the publisher and which financially bear the journal. Last but not least the journal is also managed by senior geologist of various subdisciplines from various countries who are responsible for its quality.
Articles 324 Documents
The Potential of Eocene Shale of Nanggulan Formation as a Hydrocarbon Source Rock Winardi, S.; Toha, B.; Imron, M.; Amijaya, D. H.
Indonesian Journal on Geoscience Vol 8, No 1 (2013)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2489.099 KB) | DOI: 10.17014/ijog.8.1.13-23

Abstract

DOI: 10.17014/ijog.v8i1.152In western Indonesia, Eocene shale is generally considered as a potential source rock. The Nanggulan Formation outcropping at Kulonprogo Yogyakarta consists of a shale interval of Eocene in age. Analysis of its organic material content, kerogen type, and maturity level were conducted to know its potential. The laboratory analysis of eleven samples were done to measure its TOC content. Samples with TOC > 0.5% then were analyzed to measure its Rv and TAI. Maturity level was also calculated by TTI from burial history model. The result of analysis shows there are various TOC contents and seven samples of them are categorized into a good-excellent class (TOC > 1%). Kerogen content of those samples is type III (non fluorescene amorphous-humic kerogen). One sample has a good indication of hydrocarbon formation (PY = 9.0 mg HC/g rock). Unfortunately thermal maturity level of the samples is immature (highest Rv 0.39, Tmax 422oC, and TAI 2). Otherwise, TTI calculation result from subsurface burial history modelling indicates that some areas are mature having reached gas window since 0.4 mya, especially in the area which had been influenced by a volcanic intrusion at Oligocene (28.5 mya). Therefore, the Nanggulan Formation shale has a potential capacity as a source rock with some limitation in maturity level.
Depositional Environment of Fine-Grained Sedimentary Rocks of the Sinamar Formation, Muara Bungo, Jambi Zajuli, M. Heri Hermiyanto; Panggabean, H.
Indonesian Journal on Geoscience Vol 8, No 1 (2013)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2032.861 KB) | DOI: 10.17014/ijog.8.1.25-38

Abstract

DOI: 10.17014/ijog.v8i1.153The research area is situated in the northwestern side of South Sumatra Basin, which is a part of Muara Bungo Regency, Jambi Province. The Oligocene Sinamar Formation consists of shale, claystone, mudstone, sandstone, conglomeratic sandstone, and coal-seam intercalations. This research was focused on fine sedimentary rock of Sinamar Formation, such as shale, claystone, and mudstone. Primary data were collected from SNM boreholes which have depths varying from 75 m up to 200 m, and outcrops that were analyzed by organic petrographic method, gas chromatography-mass spectrometry (GC-MS) of normal alkanes including isoprenoids, and sterane. The dominant maceral group is exinite, composed of alginite (3.4 - 18%), and resinite (1.6 - 5.6%), while vitrinite maceral consists of tellocolinite 0.4 - 0.6%, desmocollinite 0.4%, and vitrodetrinite 8.4 - 16.6%. Organic petrography and biomarker analyses show that organic materials of shales were derived from high plants and algae especially Botrycoccus species. Botrycoccus and fresh water fish fossil, found in the shale indicate a lacustrine environment.
The Potential of Ketungau and Silat Shales in Ketungau and Melawi Basins, West Kalimantan: For Oil Shale and Shale Gas Exploration Santy, Lauti Dwita; Panggabean, Hermes
Indonesian Journal on Geoscience Vol 8, No 1 (2013)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1087.509 KB) | DOI: 10.17014/ijog.8.1.39-53

Abstract

DOI: 10.17014/ijog.v8i1.154The Ketungau and Melawi Basins, in West Kalimantan, are Tertiary intramontane basins of which the potential for economic conventional oil and gas discoveries have not previously been confirmed. The Ketungau Basin is bordered by the Melawi Basin in the south. Besides non-ideal trapping mechanisms, another major problem in these basins is source rock maturation. Nevertheless, both basins are promising to be explored for oil shale and shale gas energy resources. Therefore, the aim of this paper is to give some perspectives on their source rocks, as an input for the evaluation of the potential of unconventional oil and gas. About twenty samples collected from the Ketungau and Melawi Basins were analyzed using pyrolysis and organic petrographic methods. The results show a poor to good quality of source rock potential. The Ketungau shale, which is the main source rock in the Ketungau Basin, is dominated by type III, immature, and gas prone kerogen. The Silat shale, which is the main source rock in the Melawi Basin, is dominated by type II, immature to early mature, mixed gas, and oil prone kerogen. In the field, Ketungau and Silat Formations have a widespread distribution, and are typically 900 m to 1000 m thick. Both the Ketungau and Silat shales occur within synclinal structures, which have a poor trapping mechanism for conventional oil or gas targets, but are suitable for oil shale and shale gas exploration. This early stage of research clearly shows good potential for the future development of unconventional energy within the Ketungau and Melawi Basins.
The August 2010 Phreatic Eruption of Mount Sinabung, North Sumatra Sutawidjaja, Igan S.; Prambada, O.; Siregar, D. A.
Indonesian Journal on Geoscience Vol 8, No 1 (2013)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1301.443 KB) | DOI: 10.17014/ijog.8.1.55-61

Abstract

DOI: 10.17014/ijog.v8i1.155Mount Sinabung, located in Karo Regency, North Sumatra Province, is a strato volcano having four active craters. Since its latest eruption about 1,200 year ago, a phreatic eruption occurred on August 27th, 2010. The eruption took place in Crater-I, which was initiated by a greyish white plume and then followed by black plumes as high as 2000 m above the crater. Altered rock fragments and ash were erupted during this event. The altered rocks show a development of argillic alterations which was formed in the hydrothermal system in depth. The alteration zone is formed along the northeast-southwest and northwest-southeast trend across the three craters. All of the craters are actively discharging solfataric gases, of which sulphur deposits are resulted, and they have been quarried by the local people. The age of the latest magmatic eruption was dated by 14C method from the charcoal sample found in the pyroclastic flow deposits near Bekerah Village.
Maceral Characteristics and Vitrinite Reflectance Variation of The High Rank Coals, South Walker Creek, Bowen Basin, Australia Permana, Asep K.; Ward, C. R.; Gurba, L. W.
Indonesian Journal on Geoscience Vol 8, No 2 (2013)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (795.064 KB) | DOI: 10.17014/ijog.8.2.63-74

Abstract

DOI: 10.17014/ijog.v8i2.156The Permian coals of the South Walker Creek area, with a vitrinite reflectance (Rvmax) of 1.7 to 1.95% (low-volatile bituminous to semi-anthracite), are one of the highest rank coals currently mined in the Bowen Basin for the pulverized coal injection (PCI) market. Studies of petrology of this coal seam have identified that the maceral composition of the coals are dominated by inertinite with lesser vitrinite, and only minor amounts of liptinite. Clay minerals, quartz, and carbonates can be seen under the optical microscope. The mineral matter occurs in association with vitrinite and inertinite macerals as syngenetic and epigenetic mineral phases. The irregular pattern of the vitrinite reflectance profile from the top to the bottom of the seam may represent a response in the organic matter to an uneven heat distribution from such hydrothermal influence. Examination of the maceral and vitrinite reflectance characteristics suggest that the mineralogical variation within the coal seam at South Walker Creek may have been controlled by various geological processes, including sediment input into the peat swamp during deposition, mineralogical changes associated with the rank advance process or metamorphism, and/or hydrothermal effects due to post depositional fluid migration through the coal seam.
Morphostructural Development of Gunungsewu Karst, Jawa Island Tjia, H. D.
Indonesian Journal on Geoscience Vol 8, No 2 (2013)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2326.784 KB) | DOI: 10.17014/ijog.8.2.75-88

Abstract

DOI: 10.17014/ijog.v8i2.157Gunungsewu Karst (also known as Sewu karst in the literature) is synonymous with morphology of a carbonate terrain dominated by hills crowned by accordant-level tops that developed in a humid tropical environment by comparatively more rapid dissolution and denudation. In addition, the hills are sinoid to cone-shaped. Surface drainage is negligible compared to subsurface water flow. Abandoned channel segments and spatial arrangements of karst hills have been found to correspond with fracture patterns that are genetically associated with the regional compression direction of Jawa Island. Images derived from space platforms show many landform patterns that were neither known from ground-based nor from aerial photograph study. Landforms arranged in ring, multi-ring, spiral, polygonal, and long linear to serpentine patterns are common beside the expected depressions of dolines, poljes, and uvalas. The orientations of the long linear ridges appear to change systematically from those near the coast to those located inland. These linear ridges are interpreted as depositional fronts, most likely representing breaker zones. The youngest depositional ridge fronts, located nearest to the present shoreline, are parallel to the geological strike of Jawa Island. Toward the island’s interior, linear depositional fronts deviate in orientation by as much as 40o. This is now interpreted to have resulted from counterclockwise rotation of the Gunungsewu microplate since the late Middle Miocene. Similar CCW rotations are indicated by the paleomagnetic orientations of igneous rocks located farther east in the southern range of the island. Active tectonics is expressed in stage-wise net uplift of Gunungsewu whereas regional tilting appears negligible. Stacked and often paired river terraces (thus suggesting land uplift) have been used to relatively date paleoarcheological finds. Very recent uplift on the coast show up in lazy-V limestone notch profiles, and occasionally by stacked notches. At the Klayar coast, slight northward tilt of a few degrees are expressed as counter-regional inclination of a subrecent abrasion platform.
Hotwater Geochemistry for Interpreting The Condition of Geothermal Reservoir, Dieng Plateau Case, Banjarnegara-Wonosobo Regency, Central Java Ramadhan, Yuris; Channel, K.; Herdianita, N. R.
Indonesian Journal on Geoscience Vol 8, No 2 (2013)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (819.428 KB) | DOI: 10.17014/ijog.8.2.89-96

Abstract

DOI: 10.17014/ijog.v8i2.158The researched area, located in the Dieng Plateau, is included into the Holocene Dieng Volcanic Rock Unit. The regional structure in this area is originated from the major caldera with local fault having orientation of SE - NW. Surface manifestations found in the researched area are hot springs located in Bitingan, Sileri, Siglagah, Pulosari, Kaliputih, and Sikidang. Fumaroles occur in Candradimuka and Pagerkandang and mud pools are located in Sileri and Sikidang craters. Temperatures of the hot springs ranges from 43 C to 61 C, pH of 6 - 7, and their conductivity are of 38-78 MeV. The type of hotwater is a mixture of bicarbonate, sulfate, and chloride sulfate deriving from condensation of steam. Based on a relative composition of Cl-Li-B, the hot water is originated from four different reservoirs with different rock associations, while their reservoir temperatures vary from 225 C to 300 C.
Magma Supply System at Batur Volcano Inferred from Volcano-Tectonic Earthquakes and Their Focal Mechanism Hidayati, Sri; Sulaeman, C.
Indonesian Journal on Geoscience Vol 8, No 2 (2013)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2639.733 KB) | DOI: 10.17014/ijog.8.2.97-105

Abstract

DOI: 10.17014/ijog.v8i2.159The Volcano-Tectonic (VT) earthquakes occurring during September - November 2009 were analyzed. The result shows that the epicentres aligning in NE- SW direction coincided with the weak zone of Batur Volcano Complex. The focal zone is located at the depth around 1.5 - 5.5 km beneath the summit. Migration of magma was detected by ground deformation measured by GPS and focal mechanism. Mechanism of VT earthquake shows mostly normal fault types during the swarm in November 2009.
Salinity Pattern in Semarang Coastal City: An Overview Rahmawati, Novi; Marfai, M. A.
Indonesian Journal on Geoscience Vol 8, No 2 (2013)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (891.465 KB) | DOI: 10.17014/ijog.8.2.107-118

Abstract

DOI: 10.17014/ijog.v8i2.160Semarang Coastal City is one of cities in Indonesia which has experienced a long-term salt intrusion. Land subsidence and groundwater exploitation were identified as main factors accelerated salt intrusion in this area. Extended salt intrusion into the land from year to year cannot be neglected. Salinity pattern and land use affected by this intrusion must be identified. Salinity pattern could be identified by electrical conductance content. The purposes of this research are: a) to define spatial electrical conductance map from 1995 to 2008 and b) to identify salinity pattern in each land use. Primary data set of electrical conductance measurement in 2004 and 2008 was performed. Secondary data set of electrical conductance was collected in 1995 and 2000. Electrical conductance mapping was assigned by point interpolation using GIS Environment. Land use classification was interpreted from topographical map and IKONOS using GIS Environment. Field check of land use was also done in the study area. Geologically, the area setting consists of Damar, Kalibiuk, and Breccias Formations, where the Damar Formation is the recharge source for groundwater in Semarang City. Based on the result, it can be concluded that the salinity content in groundwater increased from 1995-2008. In 1995, there was only 2.4% of brackish groundwater in Semarang Coastal City, but in 2008, most of area in that region was classified as saline. Land use conversion into built up area increased from 1998 to 2008. The area intruded by salt water increased within 1995, 2004, and 2008 periods. About 68 % of the area contained brackish water and most of the area were built up area in 1995. In 2004, no fresh groundwater found in Semarang Coastal City and the area of brackish groundwater reached 77% and about 23% was saline groundwater which 82% of the built up area included brackish groundwater. In 2008, approximately 55% of Semarang Coastal City was occupied by saline groundwater. About 51% of groundwater built up area was saline.
Seasonal Mean Variability of Coral-based Sea Surface Salinity from Simeulue, Mentawai, Bunaken, and Bali Cahyarini, Sri Yudawati
Indonesian Journal on Geoscience Vol 8, No 3 (2013)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1112.334 KB) | DOI: 10.17014/ijog.8.3.119-125

Abstract

DOI: 10.17014/ijog.v8i3.161Sea surface salinity is an important parameter in a climate study. Coral δ18O records δ18O seawater and sea surface temperature (SST). While, coral Sr/Ca records SST only commonly used in a paleoclimate study to reconstruct SST. Thus, paired coral δ18O and Sr/Ca can be used to reconstruct δ18O seawater. δ18O seawater and SSS is linearly correlated, thus reconstructed δ18O seawater further is used to reconstruct sea surface salinity (SSS). Instead of using coral Sr/Ca as SST recorder, paired model (grid) or measured SST data is used to reconstruct SSS. In this study, paired coral δ18O and grid SST data are presented to reconstruct SSS from several different locations across Indonesian sea i.e Simeulue, Mentawai, Bunaken, and Bali. Coral-based SSS reconstructions from those locations are then compared to the grid SSS in the seasonal mean scale. The result shows that annual mean variation of salinity for period of 1958-2008 in Mentawai and Simeulue is 33.25 psu and 33.26 psu respectively, while in Bunaken and Bali is 34.03 psu and 33.47 psu respectively. Correlation coefficient between coral salinity and salinity from model data in the seasonal/monthly mean scale is high i.e R = 0.62 - 0.83. Based on the monthly mean data, corals in the studied area strongly record SSS variation in the monthly or seasonal mean scale. In Mentawai and Simeulue waters, SSS variation is influenced strongly by monsoon. While, in addition to the monsoon, ocean advection also affects seasonal variability of SSS in the Bunaken and Bali waters.