cover
Contact Name
bernadeta subandini astuti
Contact Email
bernadeta.palguno@gmail.com
Phone
+6222-7213793
Journal Mail Official
ijog@bgl.esdm.go.id
Editorial Address
Jl. Diponegoro No. 57 Bandung, Indonesia
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal on Geoscience
The spirit to improve the journal to be more credible is increasing, and in 2012 it invited earth scientists in East and Southeast Asia as well as some western countries to join the journal for the editor positions in the Indonesia Journal of Geology. This is also to realize our present goal to internationalize the journal, The Indonesian Journal on Geoscience, which is open for papers of geology, geophysics, geochemistry, geodetics, geography, and soil science. This new born journal is expected to be published three times a year. As an international publication, of course it must all be written in an international language, in this case English. This adds difficulties to the effort to obtain good papers in English to publish although the credit points that an author will get are much higher. This Journal publishes 3 numbers per year at least 15 articles. It is a challenge for the management of the journal to remain survive and at the same time continuously maintain its quality and credibility in spite of those various constraints. Fortunately, this effort is strongly supported by the Geological Agency of Indonesia, as the publisher and which financially bear the journal. Last but not least the journal is also managed by senior geologist of various subdisciplines from various countries who are responsible for its quality.
Articles 324 Documents
Extensional Tectonic Regime of Garut Basin based on Magnetotelluric Analysis Handayani, Lina; Kamtono, Kamtono; Wardhana, D. D.
Indonesian Journal on Geoscience Vol 8, No 3 (2013)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (854.834 KB) | DOI: 10.17014/ijog.8.3.127-133

Abstract

DOI: 10.17014/ijog.v8i3.162Garut Basin are is part of Bandung-Garut Greater Basin (Bandung Zone) characterized by a large basin surrounded by mountain ranges. Active volcanoes had distributed their material as pyroclastic deposits around the outer border of the zone and as lava flow deposit separating the two basins. Bouguer gravity anomaly data had also indicated the presence of several low anomaly closures at about the area of Bandung and Garut Basins that were surrounded by high gravity anomaly zones. Two magnetotelluric surveys were completed to acquire the subsurface model that might explain the tectonic evolution of studied area. The first stage was characterized sby the presence of horst - graben structures that might imply an extensional regime of the area. The next stage of evolutionwas indicated by the horizontal layering correlated to the relative non-active tectonic. In addition, a most recent structure that appeared near the surface might suggest a possible extension force as the current stage.
Directed Volcanic Blast as a Tragedy of October 26Th, 2010 at Merapi Volcano, Central Java Sutawidjaja, Igan S.
Indonesian Journal on Geoscience Vol 8, No 3 (2013)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1109.525 KB) | DOI: 10.17014/ijog.8.3.135-141

Abstract

DOI: 10.17014/ijog.v8i3.163Merapi is an active strato volcano located in Central Java. This volcano is regarded as the most active and most dangerous volcano in Indonesia. Since the twentieth century, the activities have comprised mainly the effusive growth of viscous lava domes and lava tongues, with occasional gravitational collapses of parts of over-steepened domes producing pyroclastic flows, commonly defined as “Merapi-Type”. Since October 2010, however, explosive eruptions of a relatively large size have occurred to VEI 4, and some associated pyroclastic flows were larger and had farther reach than any produced on July 2006. These events may also be regarded as another type of eruptions for Merapi. On October26th, 2010 such event happened, even though it was not caused by pyroclastic flows of the dome collapses, about thirty people were killed including Mbah Marijan, known as the Merapi volcano's spiritual gatekeeper, who was found dead at his home approximately 4 km from the crater. The Yogyakarta Palace subsequently confirmed his death. This time the disaster was caused by a sudden directed blast that took place at 17:02 pm throughout Cangkringan, Kinahrejo Village, at the south flank of Merapi Volcano. The victims were the local people who did not predict the blast threatened their areas, because they believed that the pyroclastic flows from the dome collapses as long as they knew, did not threaten their areas, and pyroclastic flows would flow down following the Boyong River as the closest valley to their village. The blast swept an area about 8 km2, reaching about 5 km in distance, deposited thin ash, and toppled all trees to the south around the Kinahrejo and Pakem areas. The blast that reached Kinahrejo Village seemed to have moderate temperatures, because all trees facing the crater were not burnt. However, the victims were affected by dehydration and blanketed by fine ash.
Paleogene Sediment Character of Mountain Front Central Sumatra Basin Suandhi, P. A.; Rozalli, M.; Utomo, W.; Budiman, A.; Bachtiar, A.
Indonesian Journal on Geoscience Vol 8, No 3 (2013)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1342.655 KB) | DOI: 10.17014/ijog.8.3.143-149

Abstract

DOI: 10.17014/ijog.v8i3.164The SE-NW trending Mountain Front of Central Sumatra Basin is located in the southern part of the basin. The Mountain Front is elongated parallel to the Bukit Barisan Mountain, extending from the Regencies of North Padang Lawas (Gunung Tua in the northwest), Rokan Hulu, Kampar, Kuantan Singingi, and Inderagiri Hulu Regency in the southeast. The Palaeogene sediments also represent potential exploration objectives in Central Sumatra Basin, especially in the mountain front area. Limited detailed Palaeogene sedimentology information cause difficulties in hydrocarbon exploration in this area. Latest age information and attractive sediment characters based on recent geological fieldwork (by chaining method) infer Palaeogene sediment potential of the area. The Palaeogene sedimentary rock of the mountain front is elongated from northwest to southeast. Thickness of the sedimentary unit varies between 240 - 900 m. Palynology samples collected recently indicate that the oldest sedimentary unit is Middle Eocene and the youngest one is Late Oligocene. This latest age information will certainly cause significant changes to the existing surface geological map of the mountain front area. Generally, the Palaeogene sediments of the mountain front area are syn-rift sediments. The lower part of the Palaeogene deposit consists of fluvial facies of alluvial fan and braided river facies sediments. The middle part consists of fluvial meandering facies, lacustrine delta facies, and turbidity lacustrine facies sediments. The upper part consists of fluvial braided facies and transitional marine facies sediments. Volcanism in the area is detected from the occurrence of volcanic material as lithic material and spotted bentonite layers in the middle part of the mountain front area. Late rifting phase is indicated by the presence of transitional marine facies in the upper part of the Palaeogene sediments.
Potential Development of Hydrocarbon in Basement Reservoirs In Indonesia Sunarjanto, D.; Widjaja, S.
Indonesian Journal on Geoscience Vol 8, No 3 (2013)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1810.237 KB) | DOI: 10.17014/ijog.8.3.151-161

Abstract

DOI: 10.17014/ijog.v8i3.165Basement rocks, in particular igneous and metamorphic rocks are known to have porosity and permeability which should not be ignored. Primary porosity of basement rocks occurs as the result of rock formation. The porosity increases by the presence of cracks occurring as the result of tectonic processes (secondary porosity). Various efforts have been carried out to explore hydrocarbon in basement rocks. Some oil and gas fields proved that the basement rocks are as reservoirs which so far have provided oil and gas in significant amount. A review using previous research data, new data, and observation of igneous rocks in some fields has been done to see the development of exploration and basement reservoirs in Indonesia. A review on terminology of basement rock up till the identification of oil and gas exploration in basement rocks need to be based on the latest technology. An environmental approach is suggested to be applied as an alternative in analyzing the policy on oil and gas exploration development, especially in basement reservoirs.
Characteristics of Paleotsunami Sediments, A Case Study in Cilacap and Pangandaran Coastal Areas, Jawa, Indonesia Yudhicara, Yudhicara; Zaim, Y.; Rizal, Y.; Aswan, Aswan; Triyono, R.; Setiyono, U.; hartanto, D.
Indonesian Journal on Geoscience Vol 8, No 4 (2013)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2693.2 KB) | DOI: 10.17014/ijog.8.4.163-175

Abstract

DOI: 10.17014/ijog.v8i4.166A paleotsunami study having been conducted in 2011 took two study cases in Cilacap and Pangandaran coastal areas. These two regions have been devastated by tsunami in the past and had the most severe damaged on 17 July 2006. Trenching, beach profiling, and sediment sampling had been carried out, and further analysis at the laboratory had been done, such as grain size and fossil analyses and dating. In Cilacap, an iron sand layer was found as a key bed suspected as a paleotsunami deposits due to the content of anthropogenic fragments. In Pangandaran, two layers of tsunami deposit candidates were found having thickness of 5 - 6 cm at the top as a 2006 tsunami deposit candidate, and 5 - 10 cm at the bottom as a paleotsunami deposit candidate. Both grain size and fossil analysis results could explain that Pangandaran’s sediments are tsunami deposits while Cilacap’s ones are assumed to be deposited by another process rather than a tsunami.
Interstratified Illite/Montmorillonite in Kamojang Geothermal Field, Indonesia Yudiantoro, D. F.; suparka, E.; Yuwono, S.; Takashima, I.; Ishiyama, D.; Kamah, Y.; Hutabarat, J.
Indonesian Journal on Geoscience Vol 8, No 4 (2013)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1141.816 KB) | DOI: 10.17014/ijog.8.4.177-183

Abstract

DOI: 10.17014/ijog.v8i4.167Kamojang geothermal field located in West Java Province, falls under the Pangkalan Subregency, Bandung Regency. The researched area is a geothermal field located in the Quaternary volcanic caldera system of about 0.452 to 1.2 Ma. The volcanic activity generated hydrothermal fluids, interacting with rocks producing mineral alteration. The minerals formed in the areas of research are interstratified illite/montmorillonite (I/M). Analyses to identify interstratified I/M have been performed by X-ray diffraction using ethylene glycol, while the determination of the type and percentage of interstratified I/M was based on the calculation method of Watanabe. The methodology was applied on core and cutting samples from Wells KMJ-8, 9, 11, 13, 16, 23, 49, 51, and 54. The result of analysis of the samples shows that the type of clay is interstratified illite/montmorillonite and the minerals are formed at temperatures ranging from 180 to 220° C. The type of interstratified I/M in the studied area is S = 0 and S = 1. The percentage of illite type S = 0 is between 20 - 35% illite, whereas type S = 1 has about 45 - 72% illite. Along with the increasing depth, the percentage of illite is getting greater. This is consistent with the vertical distribution of temperature which increases according to the depth. This correlation results in an interpretation that the upflow zone of the geothermal reservoir is located in the centre of the Kamojang geothermal field.
Geotectonic Configuration of Kulon Progo Area, Yogyakarta Syafri, Ildrem; Budiadi, E.; Sudradjat, A.
Indonesian Journal on Geoscience Vol 8, No 4 (2013)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (931.251 KB) | DOI: 10.17014/ijog.8.4.185-190

Abstract

DOI: 10.17014/ijog.v8i4.168Kulon Progo Mountain, located west of Yogyakarta, is known as a unique morphological expression of an elongated dome frequently called “oblong dome”. The structural elements occurring in Kulon Progo Mountain were predominated by a radial pattern. Applying a quantitative method to measure various morphometric elements however, revealed that the regional geotectonic pattern apparently controlled the development of Kulon Progo Mountain. A general picture of the tectonics showed that the mountain building of Kulon Progo was not solely predominated by a vertical undation force; instead it was closely related to the general geotectonics operating in the area. The macro morphological analysis using various types of satellite imageries augmented with field visits unraveled three regional tectonic stages controlled the development of Kulon Progo Mountain. Those are Meratus, Sunda, and Java trends, operating in SW-NE, NNW-SSE, and E-W directions respectively.
Characteristics and Origin of Sedimentary-Related Manganese Layers in Timor Island, Indonesia Idrus, Arifudin; Ati, E. M.; Harijoko, A.; Meyer, F. M.
Indonesian Journal on Geoscience Vol 8, No 4 (2013)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2452.311 KB) | DOI: 10.17014/ijog.8.4.191-203

Abstract

DOI: 10.17014/ijog.v8i4.169Sedimentary-related manganese layers have been discovered in South Central Timor Regency, Timor Island, Indonesia, which is tectonically active and being uplifted due to north-trending tectonic collision between Timor Island arc and Australian continental crust. The manganese layers of 2 to 10 cm-wide interbed with deep sea sedimentary rocks including reddish - reddish brown claystone, radiolarian chert, slate, marl as well as white and pinkish calcilutite of Nakfunu Formations. Stratigraphically, the rock formations are underlain by Bobonaro Formation. Two types of manganese ores found comprise manganese layers and manganese nodule. The manganese layers strongly deformed, lenticular, and segmented, are composed of manganite [MnO(OH)], groutite [MnO(OH)], pyrolusite (MnO2), lithioporite (Al,Li) MnO2(OH)2, and hollandite [Ba (Mn4+, Mn2+)8O16] associated with gangue minerals including calcite, quartz, limonite [FeO(OH)], hematite (Fe2O3), and barite (BaSO4). Whilst the nodule type is only composed of manganite and less limonite. Geochemically, the manganese layers have grade of 63 - 72 wt.% MnO, whereas the nodule one has grade of 63 - 69 wt.% MnO. Generally, iron in Mn ore is very low ranging from 0.2 to 1.54 wt.% Fe2O3, averaged 0.76 wt.%. Hence, Fe/Mn ratio which is very low (0.003 - 0.069), typically indicates a sedimentary origin, which is also supported by petrologic and petrographic data showing layering structure of manganite and lithioporite crystal/grain. Trace element geochemistry indicates that manganese ore was precipitated in a reduction condition. Rare earth element (REE) analysis of manganese ore shows an enrichment of cerium (Ce) suggesting that the ore is basically originated in a marine environment. The manganese nodule is interpreted to be formed by chemical concretion process of unsoluble metals (i.e. mangan, iron) in seawater (hydrogenous) and precipitated on deep sea bottom. On the other hand, the manganese layer is a detrital diagenetic deposit formed by Mn remobilization in seawater column, precipitated and sedimented on the deep sea bottom. Manganese layers have probably been influenced by ‘hydrothermal process’ of mud-volcano activities, proven by the presence of quartz and barite veinlets cutting the Mn layers, manganite recrystallization to be pyrolusite along veinlets cutting manganite and lithioporite layers, and the presence of pyrite and sulphur associated with Mn layers. Field data also exhibit that the significant manganese layers are mostly found around mud volcanoes. The closely spatial and genetic relationships between manganese layers and mud-volcanoes might also be an important guide for the exploration of Mn deposit in the region.
Stratigraphy and Tectonics of the East Ketungau Basin, West Kalimantan during Palaeogene Suyono, Suyono
Indonesian Journal on Geoscience Vol 8, No 4 (2013)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1239.963 KB) | DOI: 10.17014/ijog.8.4.205-214

Abstract

DOI: 10.17014/ijog.v8i4.170East Ketungau Basin is one of frontier basins in Indonesia. Some of these basins, especially those in eastern Indonesia, have been identified to possess potential of oil and gas. The existing publications of geological fieldworks and extensive exploration in the East Ketungau Basin are limited. The detailed sedimentological and biostratigraphical studies of the sedimentary succession will be used to reconstruct the tectonic and palaeogeographical history of the basin. The sedimentary Mandai Group consists of three facies such as mudstone facies, clean sand facies and alternation between thinly coal seam, coaly shale, and claystone facies. However, each facies characterizes depositional environment of barrier- island and associated strand-plain systems.
Gold Phytomining: A New Idea for Enviromental Sustainablity in Indonesia Krisnayanti, Baiq Dewi; Anderson, Christopher
Indonesian Journal on Geoscience Vol 1, No 1 (2014)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (542.201 KB) | DOI: 10.17014/ijog.1.1.1-7

Abstract

DOI: 10.17014/ijog.v1i1.171New technology is needed to protect the safety and health of communities and the environment at ASGM locations in Indonesia. This technology must be simple, cheap, easy to operate, and financially rewarding. A proven option that should be promoted is phytoextraction, a farming activity that could develop agriculture as an alternative livelihood in ASGM areas. This is a technology where plants are used to extract metals from waste rock, soil, or water. These metals can be recovered from the plant in its pure form, then be sold or recycled. Gold phytoextraction is a commercially available technology, while an international research has shown that phytoextraction will also work for mercury. In the context of this idea, tailings would be contained in ‘farming areas’ and cropped using phytoextraction technology. Gold and mercury would be extracted in the crops, with the remaining mercury burden of the tailings becoming adsorbed to soil constituents. The system would be financially rewarding to ‘gold farmers’. The economic value of this scenario could facilitate the clean-up and management of mercury pollution, reducing the movement of mercury from tailings into soil, water, and plants, thereby mitigating environmental and human risk in the mining areas. The goal of the described research is to promote agriculture as an alternative livelihood in ASGM areas. The gold value of the phytoremediation crop should provide a cash incentive to artisanal farmers who develop this new agricultural enterprise. The benefits will be social, environmental, and economic, as opportunities for education, employment, new business, the containment of toxic mercury, food safety and security, and revenue are all realized.