cover
Contact Name
Artoto Arkundato
Contact Email
cerimre.journal@unej.ac.id
Phone
+62331-334293
Journal Mail Official
cerimre.journal@unej.ac.id
Editorial Address
Jurusan Fisika, FMIPA, Universitas Jember Jalan Kalimantan No.37, Krajan Timur, Jember Lor, Kecamatan Sumbersari, Kabupaten Jember, Jawa Timur 68121
Location
Kab. jember,
Jawa timur
INDONESIA
Computational and Experimental Research in Materials and Renewable Energy (CERiMRE)
Published by Universitas Jember
ISSN : -     EISSN : 2747173X     DOI : https://doi.org/10.19184/cerimre.v3i2.23544
Core Subject : Science,
Computational and Experimental Research in Materials and Renewable Energy (CERiMRE) journal receives scientific articles of experimental and/or computational research that using many tools and methods as computational methods (Micromagnetic simulation, DFT Density Functional Theory, MD molecular dynamics, CFD computational fluid dynamics, MC Monte Carlo, FEM finite element method, transport neutron equation, etc) and standard experimental tools and analysis (FTIR, XRD, EDAX, bending test, etc) to develop potential applications of new materials and renewable energy sources. The materials and renewable energy under investigation may show: Prediction of material properties for new potential applications as electronics materials, photonics materials, magnetic materials, spintronics materials, optoelectronics materials, nuclear materials, thermoelectric materials, etc. Exploration of new design of renewable energy resources as in nuclear power plants, solar cell, fuel cells, biomass, thermoelectric generators, nuclear batteries, wind, wave, geothermal, etc.
Articles 1 Documents
Search results for , issue "Vol. 8 No. 1 (2025): May" : 1 Documents clear
Thermal Performance of Public Green Space using Palm Fiber Net-Based Green Canopy and Passion Fruit (Passiflora Edulis) Vegetation Muksin, Engelina; Jahja, Mohamad; Setiawan, Dewa Gede Eka; Ramadani, A Indra Wulan Sari; Djafar, Abdi Gunawan; Latief, Muh. Fachrul
Computational And Experimental Research In Materials And Renewable Energy Vol. 8 No. 1 (2025): May
Publisher : Physics Department, Faculty of Mathematics and Natural Sciences, University of Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/cerimre.v8i1.53398

Abstract

This study aims to evaluate the thermal performance of green canopies in public green spaces (RTH), both outdoors and indoors, as an environmentally friendly solution. The method involved measuring temperature and humidity over a five-month period with four observation intervals. The data were analyzed using the Temperature-Humidity Index (THI) and compared with thermal comfort standards based on the Indonesian National Standard (SNI). The results show that at 0% plant coverage, the THI values fall into the "comfortable to slightly uncomfortable" category during the period from 19:00 to 08:00. In contrast, at 81.25% plant coverage, THI values remain in the "comfortable to slightly uncomfortable" range from 21:00 to 09:00. Relative humidity met the SNI standard of 75%. Furthermore, the outdoor temperature decreased by 4.9 °C, while the indoor temperature decreased by 3.5 °C. These findings indicate that the presence of green canopies, particularly in private green spaces, significantly reduces both outdoor and indoor temperatures as the percentage of plant coverage increases.Keywords: Public Green Space, Green Canopy, Temperature Humidity Index, Indonesian National Standards

Page 1 of 1 | Total Record : 1