cover
Contact Name
Alfian Ma'arif
Contact Email
alfian.maarif@te.uad.ac.id
Phone
-
Journal Mail Official
ijrcs@ascee.org
Editorial Address
Jalan Janti, Karangjambe 130B, Banguntapan, Bantul, Daerah Istimewa Yogyakarta, Indonesia
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Robotics and Control Systems
ISSN : -     EISSN : 27752658     DOI : https://doi.org/10.31763/ijrcs
Core Subject : Engineering,
International Journal of Robotics and Control Systems is open access and peer-reviewed international journal that invited academicians (students and lecturers), researchers, scientists, and engineers to exchange and disseminate their work, development, and contribution in the area of robotics and control technology systems experts. Its scope includes Industrial Robots, Humanoid Robot, Flying Robot, Mobile Robot, Proportional-Integral-Derivative (PID) Controller, Feedback Control, Linear Control (Compensator, State Feedback, Servo State Feedback, Observer, etc.), Nonlinear Control (Feedback Linearization, Sliding Mode Controller, Backstepping, etc.), Robust Control, Adaptive Control (Model Reference Adaptive Control, etc.), Geometry Control, Intelligent Control (Fuzzy Logic Controller (FLC), Neural Network Control), Power Electronic Control, Artificial Intelligence, Embedded Systems, Internet of Things (IoT) in Control and Robot, Network Control System, Controller Optimization (Linear Quadratic Regulator (LQR), Coefficient Diagram Method, Metaheuristic Algorithm, etc.), Modelling and Identification System.
Articles 361 Documents
Improved Design of Nonlinear Control Systems with Time Delay Awatef K. Ali; MagdiSadek Mostafa Mahmoud
International Journal of Robotics and Control Systems Vol 2, No 2 (2022)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v2i2.631

Abstract

It is well known that time delay in nonlinear control systems may lead to the deterioration or even destabilization of the closed-loop systems. Therefore, specific analysis techniques and design methods are needed to be developed for nonlinear control systems in the presence of time delay. This chapter aims to give a broad overview of the stability and control of nonlinear time-delay systems. Firstly, we present some motivations and a comprehensive survey for the study of time-delay systems. Then, a brief overview of some control approaches is provided, specifically, the Lyapunov-Krasoviskii functional method for high-order polynomial uncertainties nonlinear time-delay systems, and nonlinear time-delay systems with nonlinear input, the Lyapunov-Razumikhin method for triangular structure nonlinear time-delay systems, dynamic gain control for full state time-delay systems. Finally, an application in chemical reactor systems is provided and some related open problems are discussed.
Sliding Mode Controller Based on the Sliding Mode Observer for a QBall 2+ Quadcopter with Experimental Validation Ayoub Daadi; Houssam Boulebtinai; Saddam Hocine Derrouaoui; Fares Boudjema
International Journal of Robotics and Control Systems Vol 2, No 2 (2022)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v2i2.693

Abstract

This paper studies a particular Unmanned Aerial Vehicle (UAV), called QBall 2+ quadcopter. This vehicle is a complex system, non-linear, strongly coupled, and under-actuated. First, a non-linear model was developed to represent the dynamics of the studied drone. Once the latter is established, the linear model was used to obtain the best gains of the Proportional Integral Derivative (PID) controller. This controller was applied after on the non-linear model of the UAV. Moreover, a Sliding Mode Controller (SMC) based on Sliding Mode Observer (SMO) was designed for retrieving the system unknown variables. Through these latter, the QBall 2+ was controlled, taking into account the observer errors. The first contribution in this work is to implement the PID regulator on the QBall 2+ flight controller to validate the results obtained by simulation. Secondly, due to the limitations of the Flex 3 cameras, especially when the drone is outside their working environment, the sliding mode observer was implemented to replace the cameras in order to measure the states of the system considered in this work. Simulation results of the different applied controllers were displayed to evaluate their effectiveness.
Longitudinal Modeling of a Road Vehicle: 4-Wheel Traction Calequela J. T. Manuel; Max M. D. Santos; Giane G. Lenzi; Angelo M. Tusset
International Journal of Robotics and Control Systems Vol 2, No 2 (2022)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v2i2.698

Abstract

This paper presents the longitudinal modeling of a 4-wheel traction vehicle represented in a block diagram using Matlab®/Simulink® software. The proposed modeling is suitable to be implemented in automatic parallel, oblique, or perpendicular parking systems considering speed cases between 5 km/h and 30 km/h. For the computational simulations, it was considered that the vehicle starts at rest and goes up a referenced or determined slope in degrees (°), with a sufficient rear reaction force to allow the vehicle to move until the engine produces sufficient torque. For the model of the tire variant, the magic formula (characterized by the sum of five vectors about an axis) was used. Three input signals were considered, slope, wind, and accelerator variation were considered in numerical simulations. The output signals are rear and normal front forces, vehicle speed, angular velocity, and engine acceleration. The longitudinal modeling proposed allows for easily reproducing the results and assigning new parameters to validate a Project, contributing positively both to the automotive industries and in innovation-based scientific research.
Design and Analysis of Decentralized Dynamic Sliding Mode Controller for TITO Process Mukesh G. Ghogare; A. R. Laware; S. L. Patil; C. Y. Patil
International Journal of Robotics and Control Systems Vol 2, No 2 (2022)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v2i2.648

Abstract

In this paper, a decentralized dynamic sliding mode control (DySMC) strategy is applied to a multivariable level control system. The time derivative of the control input of the DySMC is considered a new control variable for an augmented system which is composed of the original system and the integrator. This DySMC can transfer discontinuous terms to the first-order derivative of the control input and effectively reduce the chattering. The interactions between input/output variables are a common phenomenon and a challenging task in the design of multi-loop controllers for interacting multivariable processes. For reducing the interaction among variables, ideal decouplers are used. Independent diagonal controllers are designed for each decoupled subsystem, which is reduced to the first-order plus dead-time (FOPDT) model. A numerical simulation test has been carried out on a reactor system of the Industrial-Scale Polymerization (ISP). Experimental tests are performed to check the efficacy of the proposed controller using a laboratory-level coupled tank system.  A comparison of the proposed approach and sliding mode controller (SMC) is presented. Simulation and experiment results show that the DySMC approach reduces the chattering, and compensates for the effect of the external disturbances, and parametric uncertainties.
Techno-Economic Analysis of a 12-kW Photovoltaic System Using an Efficient Multiple Linear Regression Model Prediction Pouya Pourmaleki; Willis Agutu; Ali Rezaei; Nima Pourmaleki
International Journal of Robotics and Control Systems Vol 2, No 2 (2022)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v2i2.702

Abstract

Renewable energy sources are expected to replace traditional energy sources such as oil and gas in the future. It goes without saying that solar energy has been demonstrated to be a key source of green energy. Solar energy is used because it is abundant, pollution-free, and easily available. However, the power utility market requires highly exact solar energy forecasts. These challenges need the creation of a device that can precisely predict solar energy output via processing the location's weather data, which is accomplished through the use of machine learning and multiple linear regression (MLR). Some elements, such as the number of cloudy days, humidity, temperature, wind condition, and precipitation, should be addressed while simulating solar power output. In this paper, a 12-kW photovoltaic (PV) system on the rooftop of a house in Isfahan was studied using the System Advisor Model (SAM). The most significant research contribution of the proposed paper is to predict the output power of a solar system with the lowest possible error. According to the simulation results, by using the MLR model, the predicted power has an error of 6 % with the actual power, which is a very good estimation. In addition, this system meets each household's energy needs plus an additional 8430 kWh per year, resulting in being paid by utility companies, a fewer number of outages, and lower air pollution levels.
Particle Swarm Optimization (PSO) Tuning of PID Control on DC Motor Eka Suci Rahayu; Alfian Ma'arif; Abdullah Çakan
International Journal of Robotics and Control Systems Vol 2, No 2 (2022)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v2i2.476

Abstract

The use of DC motors is now common because of its advantages and has become an important necessity in helping human activities. Generally, motor control is designed with PID control. The main problem that is often discussed in PID is parameter tuning, namely determining the value of the Kp, Ki, and Kd parameters in order to obtain optimal system performance. In this study, one method for tuning PID parameters on a DC motor will be used, namely the Particle Swarm Optimization (PSO) method. Parameter optimization using the PSO method has stable results compared to other methods. The results of tuning the PID controller parameters using the PSO method on the MATLAB Simulink obtained optimal results where the value of Kp = 8.9099, K = 2.1469, and Kd = 0.31952 with the value of rise time of 0.0740, settling time of 0.1361 and overshoot of 0. Then the results of hardware testing by entering the PID value in the Arduino IDE software produce a stable motor speed response where Kp = 1.4551, Ki= 1.3079, and Kd = 0.80271 with a rise time value of 4.3296, settling time of 7.3333 and overshoot of 1.
Permanent Magnet Synchronous Generator Connected to a Grid via a High Speed Sliding Mode Control Omokhafe James Tola; Edwin A. Umoh; Enesi A. Yahaya; Osinowo E. Olusegun
International Journal of Robotics and Control Systems Vol 2, No 2 (2022)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v2i2.701

Abstract

Wind power generation has recently received a lot of attention in terms of generating electricity, and it has emerged as one of the most important sources of alternative energy. Maximum power generation from a wind energy conversion system (WECS) necessitates accurate estimation of aerodynamic torque and system uncertainties. Regulating the wind energy conversion system (WECS) under varying wind speeds and improving the quality of electrical power delivered to the grid has become a difficult issue in recent years. A permanent magnet synchronous generator (PMSG) is used in the grid-connected wind-turbine system under investigation, followed by back-to-back bidirectional converters. The machine-side converter (MSC) controls the PMSG speed, while the grid-side converter (GSC) controls the DC bus voltage and maintains the unity power factor. The control approach is second-order sliding mode controls, which are used to regulate a nonlinear wind energy conversion system while reducing chattering, which causes mechanical wear when using first-order sliding mode controls. The sliding mode control is created using the modified super-twisting method. Both the power and control components are built and simulated in the same MATLAB/Simulink environment. The study successfully decreased the chattering effect caused by the switching gain owing to the high activity of the control input.
Reduced Order and Observer-Based Reset Control Systems with Time Delays Awatef K. Ali; MagdiSadek Mostafa Mahmoud
International Journal of Robotics and Control Systems Vol 2, No 3 (2022)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v2i3.709

Abstract

This paper establishes a new mechanism to stabilize plants using reduced order reset controllers. The proposed method uses state feedback to change the dynamics of plants to guarantee oscillation behavior instead of stability, then the reset mechanism will lead to stability. We show that the base system could be unstable while the reset mechanism drives the states to the equilibrium point. The order of the reset controller equals the rank of the plant’s input matrix. We show that the controller dynamics force some states to converge to the equilibrium point within a finite time. The behavior of the rest of the plant’s states depends greatly on the selection of the state feedback gain which can be selected by any appropriate conventional method. Moreover, the stability of reset time-delay systems is addressed based on a similar theorem of the Lyapunov-Krasovskii theory. Sufficient conditions are given in terms of linear matrix inequalities to guarantee asymptotic stability of the overall dynamics. Simulation results are presented to demonstrate the effectiveness of the proposed reset approaches.
On Some Interesting Problems of Control Systems Laszlo Keviczky; Csilla Bányász
International Journal of Robotics and Control Systems Vol 2, No 2 (2022)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v2i2.527

Abstract

The paper discusses some interesting mainly philosophical paradigms of the modelling and control areas, which are still partly unsolved and/or only partially studied.
Development of a Nonlinear Harvesting Mechanism from Wide Band Vibrations Md Abdul Halim; Md Momin Hossain; Mst Jesmin Nahar
International Journal of Robotics and Control Systems Vol 2, No 3 (2022)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v2i3.524

Abstract

The main objective of this study is to present an energy harvesting approach to scavenge electrical energy from mechanically vibrated piezoelectric materials.A mechanical energy harvester device has been developed and tested. The fundamental benefit of this mechanical device is that it can function effectively in a wide range of ambient vibration frequencies, whereas traditional harvesters are limited. A suitable conditioning circuit for energy scavenging has been proposed which can achieve optimal power stream. For controlling the power flow into the battery a circuit has been designed consisting of an AC to DC rectifier, an output capacitor, a switch mode DC to DC converter, and an electromechanical battery. An adaptive control system has been described for switching any electronics devices and maximizing battery storage capacity. Experimental results reveal that the power transfer rate can be enhanced by approximately 400% by utilizing the adaptive DC to DC converter. Various investigations on the piezoelectric harvester have revealed that the energy generated by the mechanical device can exceed the 1.4-volt barrier, which is suitable for charging capacitors in electronics devices. The findings of this study will be crucial in mitigating society's energy crisis.

Page 7 of 37 | Total Record : 361