cover
Contact Name
Taufik Hidayat
Contact Email
besthd22@gmail.com
Phone
-
Journal Mail Official
buletin_thpipb@yahoo.com
Editorial Address
-
Location
Kota bogor,
Jawa barat
INDONESIA
Jurnal Pengolahan Hasil Perikanan Indonesia
ISSN : 23032111     EISSN : 2354886X     DOI : -
Core Subject : Agriculture,
JPHPI publishes manuscripts in the field of marine post-harvest, aquatic biotechnology, aquatic biochemistry, aquatic product diversification, and characteristic of aquatic raw materials. In addition, JPHPI also publishes research about aquatic product quality, standardization, and other researches within the field of aquatic product technology.
Arjuna Subject : -
Articles 811 Documents
Effectiveness of Alkali and Acid to Produce Collagen from Fish Skin of Striped Catifish Hilda Lu’lu’in Nanda Alfira Devi; Pipih Suptijah; Mala Nurilmala
Jurnal Pengolahan Hasil Perikanan Indonesia Vol 20 No 2 (2017): Jurnal Pengolahan Hasil Perikanan Indonesia
Publisher : Department of Aquatic Product Technology IPB University in collaboration with Masyarakat Pengolahan Hasil Perikanan Indonesia (MPHPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (361.823 KB) | DOI: 10.17844/jphpi.v20i2.17906

Abstract

Fish skin is one of the alternative sources contained high protein  to isolate collagen. Fish skin generally extracted by the method of acid, alkali and enzymes. The study aim to determine the effectiveness of NaOHand acetic acid on catfish (Pangasius sp.) skin extraction  process.  The concentrations of alkaline pretreatment were 0,05; 0,1; 0,15 and 0,2 M with the soaking time of 2, 4, 6, 8 and 10 h by NaOH replacement in every 2 h. The concentrations of acetic acid for hydrolisis process were 0.05; 0.1; 0.15 and 0.2 M with the soaking time of 1, 2, and 3 h. The experimental design used for pretreatment process is split splot, while for the hydrolysis process is factorial completely randomized design. The results showed that pretreatment with a concentration of 0.05 M NaOH for 4 h has a significant effect for eliminating non-collagen protein (p<0.05). The acetic acid concentration of 0.15 M for 1 h also has a significant effect on fish skin swelling. The yield of striped catfish collagen was 17.272%, the protein content was 86%, and the viscosity was 12 cP. Fish skin extract was identified as type I collagen by functional groups and electrophoretic analysis. Collagen from striped catfish skin has α1 and α2 and protein structure with the molecular weight of α chain were 94 and 98 kDa, meanwhile the molecular wheight of β chain was 204 kD.
Antibacterial Activity of Melanin from Cuttlefish and Squid Ink Yuspihana Fitrial; Iin Khusnul Khotimah
Jurnal Pengolahan Hasil Perikanan Indonesia Vol 20 No 2 (2017): Jurnal Pengolahan Hasil Perikanan Indonesia
Publisher : Department of Aquatic Product Technology IPB University in collaboration with Masyarakat Pengolahan Hasil Perikanan Indonesia (MPHPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (237.871 KB) | DOI: 10.17844/jphpi.v20i2.17907

Abstract

Marine environment comprises of many organism which are known to posses bioactive compound as a common means of self-defense or for the protection of eggs and embryos. Class Cephalopods (such as squidand cuttlefish) are notable for their defences, such as jetting escape movements, changes in colouration, toxic venom and inking.This study aims to compare the antibacterial activity of melanin from cuttlefish ink (Sepia sp.) with squid ink (Loligo sp.) against E. coli. Extraction and purification studies were carried out on Sepia and Loligo melanin using a hydrochloric acid 0,5M treatment under mechanical.The melanins were obtained and further evaluated their activity by direct contact methods between melanin and E. coli in nutrient broth.Total microbes was counted by total plate count.Both inks also was tested their activity against E. coli. The results showed that melanin from cuttlefish and squid inks had inhibitory activity at concentrations of 10 mg / ml and 20 mg / mL, respectively reaching 99.99% against E. coli.The inks of both Cephalopods at the same concentration as melanin, did not show any inhibitory activity against E. coli.  The melanin of Sepia sp. have a higher antibacterial activity than the melanin of Loligo sp.
Effect of Oxidative Sardin Fish Oil for Food Utilization Pitria Andriyani; Tati Nurhayati; Sugeng Heri Suseno
Jurnal Pengolahan Hasil Perikanan Indonesia Vol 20 No 2 (2017): Jurnal Pengolahan Hasil Perikanan Indonesia
Publisher : Department of Aquatic Product Technology IPB University in collaboration with Masyarakat Pengolahan Hasil Perikanan Indonesia (MPHPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (233.036 KB) | DOI: 10.17844/jphpi.v20i2.17908

Abstract

Sardine is an economic fish industry product in Indonesia. Sardin fish oil of fish meal by-product can be processed into ethyl ester as a food grade product. The purpose of this study were to determine the chemical and physical the best ethyl ester of Semirefined and refined oil from sardine fish meal by-products. Results showed that heavy metals detected was cadmium (Cd) value, i.e. 0.02 ppm. SFA content of crude oil sardines was 29.39% with palmitic acid (16.24%) as the predominant fatty acids. The MUFA content amounted to 14.87% with palmitic acid as the predominant fatty acid (5.76%). The PUFA content were 35.47% with DHA (17.07%) as the predominant fatty acid, while EPA amounted to 13.82%. Semirefined oil  transformed into Semirefined ethyl ester oil was the best on oxidative and physical parameters. Oxidation process produced Semirefined ethyl ester with 1.50±0.00 mEq/kg peroxide value (PV), 0.90±0.15% fattyacids (% FFA), 5.46±0.32 mEq/kg Anisidin p-value (p-AV), 8.46±0.32 mEq/kg oxidation (TOTOKS), 62.15±0.27%T viscosity and and 5.65±0,26 cP clarity.
Identification and Profiling of Active Compounds from Golden Apple Snail’s Egg Pigments Asadatun Abdullah; N. Nurjanah; Muhammad Reyhan
Jurnal Pengolahan Hasil Perikanan Indonesia Vol 20 No 2 (2017): Jurnal Pengolahan Hasil Perikanan Indonesia
Publisher : Department of Aquatic Product Technology IPB University in collaboration with Masyarakat Pengolahan Hasil Perikanan Indonesia (MPHPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (255.684 KB) | DOI: 10.17844/jphpi.v20i2.17909

Abstract

Golden apple snail (Pomacea canaliculata) has been known as rice corps pest due to high adaptability and reproductive power. Utilization of Pomacea canaliculata’s eggs as raw materials in the food and health industry is one of the efforts to eradicate the pest snail. This study was aimed to identify the active compounds contained in the extract pigments of Pomacea canaliculata’s eggs. The methods of this study were extraction of pigments using acetone and methanol, analyzing the active compound (secondary metabolite) qualitatively, TLC to determine pigment components and LC-MS/MS to identify active compounds semi quantitatively. The results showed that active compounds in the methanol extract contain 11 carotenoid pigments of xanthophyl group, two carotenoid pigments of carotene group, and 2 active compounds in nonpigmented form, whereas the acetone extract contain 11 pigmentcarotenoids of xanthophyl group and 2 compounds active in non-pigment form.
Performance of Microbial Fuel Cell to Generate Bioelectricity Uses Different Kinds of Electrode in the Fish Processing Wastewater Bustami Ibrahim; Pipih Suptijah; Zhalindri Noor Adjani
Jurnal Pengolahan Hasil Perikanan Indonesia Vol 20 No 2 (2017): Jurnal Pengolahan Hasil Perikanan Indonesia
Publisher : Department of Aquatic Product Technology IPB University in collaboration with Masyarakat Pengolahan Hasil Perikanan Indonesia (MPHPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (270.031 KB) | DOI: 10.17844/jphpi.v20i2.17946

Abstract

Microbial Fuel Cell (MFC) is one of the alternative technologies which can convert chemical energy to electrical energy through a catalytic reaction using microorganisms. The technology can be implemented for wastewater handling such as fish processing wastewater which contains highly in organic substances. The research objective was to measure the performance of MFC system using fishery processing wastewater in order to generate bioelectricity and to reduce its organic pollution load within a different material of the electrode. The electrode materials used were aluminum, iron, carbon graphite, and also the combination of aluminum and carbon graphite. The research carried out in three phases: production of fishery wastewater, assembly of MFC single chamber system and measurement of the bioelectricity produced. The bioelectricity power resulted during 120 hours of observation were 0.23V for aluminum, 0.17V for iron, 0.19V for carbon graphite, and 0.34V for the combination between aluminum and carbon graphite averagely. The MFC system can also  decrease the organic load parameter of wastewater as much as total Nitrogen was 61%, BOD 30.11%, COD 59.34%, and total Nitrogen Ammonia 12.45%. The increasing of activated sludge biomass occurred on the last observation with MLSS and MLVSS values respectively 7,066.67 mg/L and 6,100 mg/L.
Antioxidant Activities of Various Brown Seaweeds from Seribu Islands Seftylia Diachanty; N. Nurjanah; Asadatun Abdullah
Jurnal Pengolahan Hasil Perikanan Indonesia Vol 20 No 2 (2017): Jurnal Pengolahan Hasil Perikanan Indonesia
Publisher : Department of Aquatic Product Technology IPB University in collaboration with Masyarakat Pengolahan Hasil Perikanan Indonesia (MPHPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (248.196 KB) | DOI: 10.17844/jphpi.v20i2.18013

Abstract

Brown seaweeds contain various metabolites (carotenoids, laminarin, alginate, fucoidan, mannitol, and phlorotannin) as anticancer substances, antioxidants and chemopreventive agent against degenerative diseases. This research was aimed to determine the chemical properties and antioxidants activity of Sargassum polycystum, Padina minor and Turbinaria conoides. This research consisted of the proximate analysis, crude fiber, minerals, heavy metals, extraction, phytochemicals, analysis phenolic compound and antioxidant activity with DPPH, FRAP and CUPRAC methods. The results showed moisture content of S. polycystum, P.  minor, and T. conoides 24-31%, fat 0.23-0,47%, protein 3-4%, ash 27-45%, carbohydrate 26-38% and crude fiber 2-6%. Mineral Fe S. polycystum, P.minor and T.conoides about 0.03 g/kg to 0.39 g/kg, Ca 11.28 g/kg to 27.98 g/kg, K 13.86 g/kg to 41.15 g/kg, Na 16.31 g/kg to 20.51 g/kg and Mg 8.04 g/ kg to 18.68 g/kg. The range of heavy metals Pb S. polycystum, P.  m i n o r  and T. conoides 3.48 mg/kg to 12.68 mg/kg, Hg 0.24 mg/kg to 0.53 mg/kg and Cu 5.66 mg/kg to 7.02 mg/kg. Ethanol extract of S. polycystum, P. minor, and T. conoides contains alkaloids, phenolic, flavonoids, saponins, steroids, and triterpenoids. Total phenolic compounds of brown seaweeds ranged from 3758.97-8287.18 mg GAE/g. Brown seaweeds contain DPPH antioxidant activities within IC50 values of 1.9-9.6 mg/mL, FRAP 70.643-105.357 µmol Trolox/g and CUPRAC 85.268-201 µmol Trolox/g.
THERMAL STABILITY OF SYNTHETIC PEPTIDES MIMICKING THE SEQUENCE OF THE REGION CONTAINING THE SKIP RESIDUES IN SQUID MYOSIN ROD Yoshihiro Ochiai; Mala Nurilmala; GuoFeng Wang; Shugo Watabe
Jurnal Pengolahan Hasil Perikanan Indonesia Vol 20 No 2 (2017): Jurnal Pengolahan Hasil Perikanan Indonesia
Publisher : Department of Aquatic Product Technology IPB University in collaboration with Masyarakat Pengolahan Hasil Perikanan Indonesia (MPHPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (480.321 KB) | DOI: 10.17844/jphpi.v20i2.18014

Abstract

Myosin is the major protein in skeletal muscles including those of fish and shellfish. The characteristics of this protein are closely related to the biological function and the quality and physical properties of musclefood. In the myosin rod (the coiled-coil region of myosin), several amino acid residues, known as skip residues, seem to destabilize the ordered structure (heptad repeat). These residues might be responsible for reducing thermal stability. Attempts were thus made to examine the role of these residues in the rod of squid myosin, based on the thermodynamic properties of synthetic peptides which have been designed to mimic the partial sequence of myosin heavy chain from the squid Todarodes pacificus mantle muscle. Five peptides, namely, with the sequence of Trp1343 -Ala1372  having the skip residue Glu1357 at the center (Peptide WT), without the skip residue (Peptide Δ), with the replacements of the skip residue (Glu) by Ile, Gln and Pro (Peptides E/I, E/Q, and E/P, respectively) to modify the helix forming propensity, were synthesized. The results obtained showed that the stability of the peptides as measured by circular dichroism spectrometry was in the order of Peptide Δ > Peptide WT > Peptide E/Q > Peptide E/P > Peptide E/I. It is suggested that the presence of the skip residues dexterously tunes the stability or flexibility of the coiled-coil structure, thus possibly regulating thick filament formation and further gel formation ability of myosin.
Organoleptic Characteristics and Chemicals Ilabulo Catfish Fortification Rita Marsuci Harmain; Faiza Dali; N. Nurjanah; Agoes Mardiono Jacoeb
Jurnal Pengolahan Hasil Perikanan Indonesia Vol 20 No 2 (2017): Jurnal Pengolahan Hasil Perikanan Indonesia
Publisher : Department of Aquatic Product Technology IPB University in collaboration with Masyarakat Pengolahan Hasil Perikanan Indonesia (MPHPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (169.308 KB) | DOI: 10.17844/jphpi.v20i2.18015

Abstract

Diversification of traditional food ilabulo made from raw catfish (Pangasius sp.) has the potential to be developed in Gorontalo province to substitute chicken viscera. The research aimed to make ilabulo substitute the raw material of chicken viscera with the catfish fortified Kappaphycus alvarezii seaweed and catfish bone meal and to determine the organoleptic and chemical characteristics of ilabulo catfish fortification. Fortified treatment is K. alvarezii  and catfish bone (5 dan 10% ),  B (10 and 15%) and  C (15 dan 20%). The organoleptic analysis used a hedonic scale of favorite criteria on the appearance, texture, color, flavor, and taste. The results of organoleptic analysis continued with Bayes test. The chemical analysis used the Association of Official Analytical Chemist method. The result of the hedonic characteristic of ilabulo catfish fortification was on the appearance  neutral criteria – like (5.53–7.03), texture neutral criteria – rather like (5.8–7.1), aroma rather like (6.3–6.73), color neutral – like (6.1–7.03) and taste (6.07–6.53) neutral criteria – rather like. The result of Bayes test obtained by a texture of importance value 5, appearance importance value 5, aroma of importance value 4, color of interest value 3 and taste of importance value 2. Characteristic of ilabulo culture of selected fortified catfish that was the fortification of K. alvarezii seaweed 15% and catfish  bone flour (20%) (fortification C) obtained by water content 56.46%, ash 11.54%, protein 7.78%, fat 8.91%, coarse fiber 0.61%, carbohydrate 22.07% and calcium 0.315 %.
Characterization of Fish Skin Gelatin Yellowfin Tuna Mala Nurilmala; Agoes Mardiono Jacoeb; Rofi Ahmad Dzaky
Jurnal Pengolahan Hasil Perikanan Indonesia Vol 20 No 2 (2017): Jurnal Pengolahan Hasil Perikanan Indonesia
Publisher : Department of Aquatic Product Technology IPB University in collaboration with Masyarakat Pengolahan Hasil Perikanan Indonesia (MPHPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (281.546 KB) | DOI: 10.17844/jphpi.v20i2.18049

Abstract

Gelatin is one of the products which become a necessity for various industries, i.e. food and non-food industries. The application of gelatin has been increasing year by year in Indonesia. However, there is nogelatin industry in Indonesia so far. Thus, it is necessary to find an alternative source of gelatin, especially from fishery by products.Thus, the purpose of this research was to extract fish skin gelatin of yellowfin tuna with temperature treatments (55, 65 and 75oC). In addition, the properties of resulted gelatin were determined including yield, pH, gel strength, viscosity, functional groups, molecular weight profiles, and amino acid composition. The extraction at 75oC was chosen as the best result. The yield was 17%; pH 5.3; gel strength 1789.55 gf, viscosity 104.2 Cp, respectively. There was functional group amide A, I, II, dan III. SDS-PAGE showed β, α1 dan α2 bands for tuna skin gelatin. In addition, the main amino acids were glycine and proline.
The Characteristics of Sodium Alginate from Brown Seaweed Sargassum crassifolium with Different Filtering Tools Ellya Sinurat; Retni Marliani
Jurnal Pengolahan Hasil Perikanan Indonesia Vol 20 No 2 (2017): Jurnal Pengolahan Hasil Perikanan Indonesia
Publisher : Department of Aquatic Product Technology IPB University in collaboration with Masyarakat Pengolahan Hasil Perikanan Indonesia (MPHPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (185.112 KB) | DOI: 10.17844/jphpi.v20i2.18103

Abstract

Indonesia is the largest producer of seaweed in the world, one of the potential marine biological resources is the brown seaweed (Sargassum crassifolium) known as an alginate producer. Alginate extraction through demineralization stage, neutralization, extraction, filtration, precipitation and bleaching. Filtration stage is a very influential process on the quality of alginate produced. In this research, filtering using different tools screen vibrator and hydraulic filter press was conducted to characterize Na-alginate seaweed Sargassum crassifolium using both filter tools. Quality of sodium alginate (yield, viscosity, gel strength, syneresis, whiteness, moisture content, ash, and pH) was determined. The result showed that the viscosity, gel strength, syneresis, and whiteness of alginate obtained using filter press showed the best result. The yield of sodium alginate produced by filter press was 10.91±4.33%, with characteristics of viscosity 82.66±112.46 cP, gel strength 353.54±184.51 g/cm2, syneresis 2.99±0.55%, whiteness 60.53±9.09%, moisture content 13.31±0.77%, ash 26.69±0.82% and pH 6.05±0.57.  Based on a parameter of alginate (yield, moisture content, ash, and pH) showed that vibrator method produced alginate with better characteristics. The sodium alginate produced has average yield 19.22±5.68%, viscosity 57.5±21.79 cP, whiteness 29.7±4.45%, gel strength 327.63±55.15 g/cm2, syneresis 4.34±0.78%, moisture content 10.23±1.68%, ash 24.94±4.41% and pH 7.03± 2.60. Operationally the filter press was more effective and efficient in filtering to result from Na-alginate compared to the screen vibrator.

Filter by Year

2004 2025


Filter By Issues
All Issue Vol. 28 No. 11 (2025): Jurnal Pengolahan Hasil Perikanan Indonesia 28(11) Vol. 28 No. 9 (2025): Jurnal Pengolahan Hasil Perikanan Indonesia 28(9) Vol. 28 No. 8 (2025): Jurnal Pengolahan Hasil Perikanan Indonesia 28(8) Vol. 28 No. 7 (2025): Jurnal Pengolahan Hasil Perikanan Indonesia 28(7) Vol. 28 No. 6 (2025): Jurnal Pengolahan Hasil Perikanan Indonesia 28(6) Vol. 28 No. 5 (2025): Jurnal Pengolahan Hasil Perikanan Indonesia 28(5) Vol. 28 No. 4 (2025): Jurnal Pengolahan Hasil Perikanan Indonesia 28(4) Vol. 28 No. 3 (2025): Jurnal Pengolahan Hasil Perikanan Indonesia 28(3) Vol. 28 No. 2 (2025): Jurnal Pengolahan Hasil Perikanan Indonesia 28(2) Vol. 28 No. 1 (2025): Jurnal Pengolahan Hasil Perikanan Indonesia 28(1) Vol. 28 No. 10 (2025) Vol. 27 No. 12 (2024): Jurnal Pengolahan Hasil Perikanan Indonesia 27(12) Vol. 27 No. 11 (2024): Jurnal Pengolahan Hasil Perikanan Indonesia 27(11) Vol. 27 No. 10 (2024): Jurnal Pengolahan Hasil Perikanan Indonesia 27(10) Vol. 27 No. 9 (2024): Jurnal Pengolahan Hasil Perikanan Indonesia 27(9) Vol. 27 No. 8 (2024): Jurnal Pengolahan Hasil Perikanan Indonesia 27(8) Vol. 27 No. 7 (2024): Jurnal Pengolahan Hasil Perikanan Indonesia 27(7) Vol. 27 No. 6 (2024): Jurnal Pengolahan Hasil Perikanan Indonesia 27(6) Vol. 27 No. 5 (2024): Jurnal Pengolahan Hasil Perikanan Indonesia 27(5) Vol. 27 No. 4 (2024): Jurnal Pengolahan Hasil Perikanan Indonesia 27(4) Vol. 27 No. 3 (2024): Jurnal Pengolahan Hasil Perikanan Indonesia 27(3) Vol. 27 No. 2 (2024): Jurnal Pengolahan Hasil Perikanan Indonesia 27(2) Vol. 27 No. 1 (2024): Jurnal Pengolahan Hasil Perikanan Indonesia 27(1) Vol. 26 No. 3 (2023): Jurnal Pengolahan Hasil Perikanan Indonesia 26 (3) Vol. 26 No. 2 (2023): Jurnal Pengolahan Hasil Perikanan Indonesia 26(2) Vol 26 No 2 (2023): Jurnal Pengolahan Hasil Perikanan Indonesia 26(2) Vol 26 No 1 (2023): Jurnal Pengolahan Hasil Perikanan Indonesia 26(1) Vol 25 No 3 (2022): Jurnal Pengolahan Hasil Perikanan Indonesia 25(3) Vol 25 No 2 (2022): Jurnal Pengolahan Hasil Perikanan Indonesia 25(2) Vol 25 No 1 (2022): Jurnal Pengolahan Hasil Perikanan Indonesia 25(1) Vol 24 No 3 (2021): Jurnal Pengolahan Hasil Perikanan Indonesia 24(3) Vol 24 No 2 (2021): Jurnal Pengolahan Hasil Perikanan Indonesia 24(2) Vol 24 No 1 (2021): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 23 No 3 (2020): Jurnal Pengolahan Hasil Perikanan Indonesia 23(3) Vol 23 No 2 (2020): Jurnal Pengolahan Hasil Perikanan Indonesia 23(2) Vol 23 No 1 (2020): Jurnal Pengolahan Hasil Perikanan Indonesia 23(1) Vol 22 No 3 (2019): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 22 No 2 (2019): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 22 No 1 (2019): Jurnal Pengolahan Hasil Perikanan Vol 21 No 2 (2018): Jurnal Pengolahan Hasil Perikanan Indonesia 21(2) Vol 21 No 1 (2018): Jurnal Pengolahan Hasil Perikanan Indonesia 21(1) Vol. 21 No. 1 (2018): Jurnal Pengolahan Hasil Perikanan Indonesia 21(1) Vol 21 No 3 (2018): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 20 No 3 (2017): Jurnal Pengolahan Hasil Perikanan Indonesia 20(3) Vol 20 No 2 (2017): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 20 No 1 (2017): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 19 No 3 (2016): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 19 No 2 (2016): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 19 No 1 (2016): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 18 No 3 (2015): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 18 No 2 (2015): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 18 No 1 (2015): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 17 No 3 (2014): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 17 No 2 (2014): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 17 No 1 (2014): Jurnal Pengolahan Hasil Perikanan Indonesia Vol. 16 No. 3 (2013): Jurnal Pengolahan Hasil Perikanan Indonesia Vol. 16 No. 2 (2013): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 16 No 1 (2013): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 15 No 3 (2012): Jurnal Pengolahan Hasil Perikanan Indonesia 15 (3) Vol 15 No 2 (2012): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 15 No 1 (2012): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 14 No 2 (2011): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 14 No 1 (2011): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 13 No 2 (2010): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 13 No 1 (2010): Jurnal Pengolahan Hasil Perikanan Indonesia Vol. 13 No. 1 (2010): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 12 No 2 (2009): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 12 No 1 (2009): Jurnal Pengolahan Hasil Perikanan Indonesia Vol 11 No 2 (2008): Buletin Teknologi Hasil Perikanan Vol 11 No 1 (2008): Buletin Teknologi Hasil Perikanan Vol 10 No 2 (2007): Buletin Teknologi Hasil Perikanan Vol 10 No 1 (2007): Buletin Teknologi Hasil Perikanan Vol 9 No 2 (2006): Buletin Teknologi Hasil Perikanan Vol 9 No 1 (2006): Buletin Teknologi Hasil Perikanan Vol 8 No 2 (2005): Buletin Teknologi Hasil Perikanan Vol 8 No 1 (2005): Buletin Teknologi Hasil Perikanan Vol 7 No 2 (2004): Buletin Teknologi Hasil Perikanan Vol 7 No 1 (2004): Buletin Teknologi Hasil Perikanan More Issue