cover
Contact Name
Tony Hadibarata
Contact Email
hadibarata@gmail.com
Phone
+6282153870439
Journal Mail Official
idwm@tecnoscientifica.com
Editorial Address
Editorial Office - Industrial and Domestic Waste Management Jalan Asem Baris Raya No 116 Kebon Baru, Tebet, Jakarta Selatan Jakarta 12830, Indonesia
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Industrial and Domestic Waste Management
Published by Tecno Scientifica
ISSN : -     EISSN : 28094255     DOI : https://doi.org/10.53623/idwm.v2i1
Core Subject : Social, Engineering,
The journal is intended to provide a platform for research communities from different disciplines to disseminate, exchange and communicate all aspects of industrial and domestic waste management. The topics of this journal include, but are not limited to: Address waste management policy, education, and economic and environmental assessments Pollution prevention, clean technologies, conservation/recycling/reuse Multicriteria assessment of waste treatment technologies Stakeholder role: technology implementation, future technology management strategies Participatory decision making, integration of policies/research in the waste sector Case studies and environmental impact analysis in the waste sector Air, water, soil, groundwater, radiological pollution, control/management Environmental pollution, prevention/control, waste treatment/management Water and municipal/agricultural/industrial wastewater and waste treatment Solid/hazardous/biosolids/residuals waste, treatment/minimization/disposal/management Environmental quality standards, legislation, regulations, policy Public/environmental health, environmental toxicology, risk assessment Sources/transport/fate of pollutants in the environment; remediation, restoration Mathematical/modelling techniques, case studies
Articles 46 Documents
Exploring the Potential of Composting for Bioremediation of Pesticides in Agricultural Sector Lau, Yu Yan; Hernandes, Erika; Kristanti, Risky Ayu; Wijayanti, Yureana; Emre, Mehmet
Industrial and Domestic Waste Management Volume 3 - Issue 1 - 2023
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/idwm.v3i1.245

Abstract

The rapid expansion of the human population has raised the chemical stress on the environment due to the increased demand of agricultural yields. The use of pesticides is the primary contributor to environmental chemical stress, which is essential for agricultural expansion in order to produce enough food to sustain the burgeoning human population. Pesticide residues in soil have grown to be a subject of rising concern as a result of their high soil retention and potential harm to unintended species. Diverse remediation strategies, such as physical, chemical, and biological, for limiting and getting rid of such contaminants have been put forth to deal with this problem. Bioremediation is one of these techniques, which has been deemed the best for reducing pollution because of its low environmental impact, simplicity of operation and construction. Microorganisms are implemented in this technique to break down and get rid of toxins in the environment or to reduce the toxicity of chemical compounds. This study thoroughly analyses the different composting soil remediation methods, including landfarming, biopiles, and windrows, to reduce and eliminate soil pollution. Although biological treatment is the best option for cleaning up polluted soil, it is still important to evaluate and review the approaches over the long term to determine whether they are effective in the field. It is because the reactivity of the microorganisms is highly dependent on environmental parameters, and the contemporary environment is characterised by unpredictable weather patterns, localised droughts, and temperature fluctuations.
A Review on Pollutants Found in Drinking Water in Sub-Sahara African Rural Communities: Detection and Potential Low-cost Remediation Methods Fouda-Mbanga, Bienvenu Gael; Seyisi, Thulethu; Nthwane, Yvonne Boitumelo; Nyoni, Bothwell; Tywabi-Ngeva, Zikhona
Industrial and Domestic Waste Management Volume 3 - Issue 2 - 2023
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/idwm.v3i2.264

Abstract

Water is the most essential substance that supports various life mechanisms. It is a fundamental and necessary requirement for mankind and all other living creatures on the planet. Therefore, daily drinking water should be clean, readily available, sufficient, and free from harmful substances. However, in many rural areas, most sources of drinking water are assumed to be safe for human consumption, but this is not always the case. This work aims to provide a review of pollutants found in the drinking water of Sub-Saharan rural communities and explore potential low-cost remediation methods. The assessment of water pollutants and their remediation methods has been the primary focus of research for several years. Additionally, the World Health Organisation has established various minimum standards regarding the concentration of common pollutants in water. This review presents the major sources of water, the origin of contaminants, the different types of pollutants, and remediation methods to enhance the current knowledge in the field of rural drinking water contaminants.
Phytoremediation of Microplastics: A Perspective on Its Practicality Tang, Kuok Ho Daniel
Industrial and Domestic Waste Management Volume 3 - Issue 2 - 2023
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/idwm.v3i2.291

Abstract

Microplastics have permeated all parts of the environment, rendering their removal essential. Numerous strategies ranging from the physical removal of mismanaged plastic items to the biodegradation of microplastics with microorganisms and biocatalysts have been proposed to alleviate microplastic pollution. Phytoremediation is one of the plastic-removing strategies, but it has not received much attention. This perspective paper aims to review the phytoremediation of microplastics and discuss its practicality. The paper shows that plants could act as interceptors and a temporary sink of microplastics by facilitating their deposition, adsorbing them, trapping them in the root zone, enabling them to cluster on the roots, taking them up, translocating them, and accumulating them in various plant parts. However, there was a lack of evidence pointing to the degradation of microplastics after they were adsorbed, taken up, and stored. Weak adsorption and environmental factors may cause the trapped microplastics to desorb, resuspend, or evade, thus also making plants a source of microplastics. The microplastics trapped and accumulated in plants may be transferred to the higher trophic levels of the food chain through ingestion and raise concerns over their ecotoxicities. Unlike localized pollution, microplastic pollution is widespread, which limits the applicability of phytoremediation. Besides, microplastics could adversely impact plant health and the ability of plants to remove other environmental pollutants. These drawbacks may reduce the attractiveness of phytoremediation unless it can be effectively combined with bioremediation to degrade microplastics.
Bioremediation of Pesticide-Contaminated Soils through Composting: Mechanisms, Factors, and Prospects Wong, Wei Lin; Pangging, Monmi; Rubiyatno
Industrial and Domestic Waste Management Volume 3 - Issue 2 - 2023
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/idwm.v3i2.338

Abstract

Pesticide contamination of soils poses a significant environmental and agricultural challenge on a global scale, with escalating pesticide consumption in various regions. Composting has emerged as a cost-effective and sustainable bioremediation method for pesticide-contaminated soils. This review article delves into the mechanisms, factors influencing efficiency, and the pros and cons of composting as a strategy to address pesticide pollution in soils. Pesticides enter soil environments through both point sources, such as spillage from storage or disposal areas, and non-point sources, including intensive agricultural use and household applications. The physical and chemical characteristics of pesticides, coupled with soil factors like permeability and particle size, influence their fate and behavior in soils. Composting, as a bioremediation method, offers several advantages, including complete destruction of pesticide compounds through microbial degradation, transforming them into less hazardous products. Key factors affecting composting efficiency include nutrient availability, particle size, temperature, pH, oxygen, and moisture content, all crucial for microorganism growth and pesticide degradation. This article underscores the importance of maintaining optimal conditions for these factors to ensure the high performance and efficiency of pesticide degradation during composting. It also discusses the potential drawbacks of this method. Composting proves to be a promising and eco-friendly approach for remediating pesticide-contaminated soils, addressing both environmental concerns and the need for sustainable agricultural practices.
Sustainable Energy from Waste: A Feasibility Study in Miri, Malaysia Chua, Ming Xuan; Hashim, Nur Hasyimah; Downmore, Musademba; Gani, Paran
Industrial and Domestic Waste Management Volume 3 - Issue 2 - 2023
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/idwm.v3i2.349

Abstract

The growth of urban populations, industrialization, and economic development has led to a surge in solid waste production. When local recycling infrastructure falls short, much of this waste ends up in landfills, causing environmental and social challenges. This study aims to assess the feasibility of converting municipal solid waste (MSW) into energy, with a focus on combustion chamber modeling in Miri, Sarawak. Data on MSW composition are obtained from secondary sources. Ansys Fluent software is used to model the combustion chamber, and simulations are conducted to explore temperature, turbulence, and species distribution. MSW composition illustrates higher substantial fractions, with 39.8% being food waste, followed by 20.7% plastic/rubber. Calorific values range from 4652 kJ/kg for food waste to 32564 kJ/kg for plastic/rubber. Combustion simulations result in maximum flue gas temperatures of 1500 °C, 1200 °C, and 1800 °C under varying air inlet conditions. Turbulence intensities on the grate range from 125% to 174% for these air inlet configurations. The study concludes that moisture content significantly affects calorific value and heat generation during combustion. Higher turbulence intensities lead to increased reaction rates and heat generation, improving the energy efficiency of the process.
Nanoparticles in Soil Remediation: Challenges and Opportunities New, Wei Xuen; Ogbezode, Joseph Ekhebume; Gani, Paran
Industrial and Domestic Waste Management Volume 3 - Issue 2 - 2023
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/idwm.v3i2.357

Abstract

Nanoremediation emerges as a promising technology for mitigating soil contamination, encompassing various nanotechnology applications, including chemical degradation, Fenton-type oxidation, photocatalytic degradation, immobilization, and integration with bioremediation techniques like phytoremediation. In addressing soil pollution, the most extensively researched nanomaterials (NMs) are based on carbon, metal and metal oxide, nZVI, and other nanocomposites. Nevertheless, limitations accompany the use of NMs in soil remediation. To assess whether nanotechnology applications outweigh environmental threats, it is crucial to investigate potential effects of NMs on terrestrial vegetation, soil organisms, and human well-being. The impacts of NMs on ecology and the soil environment must be taken into consideration when formulating remediation strategies. Future directions for applied and fundamental studies could include developing multifaceted nanocomposites, integrating them with technologies like bioremediation. Additionally, exploring real-time control and monitoring of NMs and their efficacy in removing pollutants is worth consideration. Pursuing these avenues is vital for advancing the field of soil remediation and comprehending the impact of nanotechnology on the environment.
Health Risk Assessment of Heavy metals, Physicochemical properties and Microbes in Groundwater near Igando Dumpsite in Lagos, Nigeria Yahaya, Tajudeen; Chidi, Okeke; Abdulrahman, Sani; Oladele, Esther; Abdulrakib Abdulrahim; Abdulganiyu, Yunusa; Izuafa, Abdulrazaq
Industrial and Domestic Waste Management Volume 4 - Issue 1 - 2024
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/idwm.v4i1.375

Abstract

The most common and cost-effective waste disposal method is the dumpsite; however, leachate from dumpsites may percolate and compromise groundwater sources. This study evaluated the levels of heavy metals (lead, cadmium, chromium, copper, and arsenic), physicochemical parameters (pH, electrical conductivity, total dissolved solids, hardness, calcium, magnesium, and chloride), and microorganisms in borehole water samples obtained at distances of 50, 100, 200, and 400 meters from the Igando dumpsite in Lagos, Nigeria. The health hazards associated with the heavy metals were also calculated. Physicochemical analysis indicated that the water samples were acidic, with pH values ranging from 4.30±0.01 to 5.21±0.008. They contained levels of calcium (166.73±0.01 - 328.66±0.06 mg/l), magnesium (83.72±0.02 - 119.40±0.17 mg/l), hardness (416.01±0.11 mg/l - 820.00±1.63 mg/l), and chloride (20.07±0.02 - 120.90±0.81 mg/l) that exceeded the limits set by the World Health Organization. Heavy metal analysis showed that, in all locations, lead exceeded the permissible limits, cadmium exceeded the limits except for the 400-m location, and copper, chromium, and arsenic (except for the 50-m location) were within permissible limits. The average daily intake and hazard quotient of the heavy metals were both within recommended limits, but the carcinogenic risks of lead, cadmium, and copper in water collected at a distance of ≤100m exceeded the threshold. Microbiological examinations revealed non-permissible levels of bacteria at all locations, coliforms at the 400-m location, and fungi at the 50-m and 400-m locations. On average, the parameters significantly (p<0.05) increased in concentrations as the proximity to the dumpsite decreased. These findings indicate that borehole water is not suitable for drinking without treatment.
Managing Household Waste Through Transfer Learning Kunwar, Suman
Industrial and Domestic Waste Management Volume 4 - Issue 1 - 2024
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/idwm.v4i1.408

Abstract

As the world continues to face the challenges of climate change, it is crucial to consider the environmental impact of the technologies we use. In this study, we investigate the performance and computational carbon emissions of various transfer learning models for garbage classification. We examine the MobileNet, ResNet50, ResNet101, and EfficientNetV2S and EfficientNetV2M models. Our findings indicate that the EfficientNetV2 family achieves the highest accuracy, recall, f1-score, and IoU values. However, the EfficientNetV2M model requires more time and produces higher carbon emissions. ResNet50 outperforms ResNet110 in terms of accuracy, recall, f1-score, and IoU, but it has a larger carbon footprint. We conclude that EfficientNetV2S is the most sustainable and accurate model with 96.41% accuracy. Our research highlights the significance of considering the ecological impact of machine learning models in garbage classification.
Operations and Patronage of Private Waste Contractors Initiative of Solid Waste Collection in Ibadan Metropolis, Nigeria Oladeji, Peter B; Oyedare, Adekunle Benjamin; Ogunwale, Taiwo Olusegun; Oyetola, Simeon Oyesoji; Basiru, Taofeek Adekola; Ogunrinola, Oluwaseun Femi
Industrial and Domestic Waste Management Volume 4 - Issue 1 - 2024
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/idwm.v4i1.422

Abstract

The Oyo State Solid Waste Management Authority (OYSWMA) hired private waste operators (PWOs) because the government was unable to handle the increasing amounts of solid garbage that were being carelessly deposited in every corner of the metropolis. This study looked at the private garbage contractors' methods of operation, clientele, and difficulties in managing residential solid waste in Ibadan, Nigeria. In the three local government districts of the metropolis, a structured questionnaire was given to 21 private refuse operators and 250 homes. A few measures of service quality were employed to determine the method of operation and customer base. To interpret the gathered data, both descriptive and inferential statistics were employed. The findings showed that the factors that affected residents and operators of SWM the most were educational attainment, monthly income, building types, and occupation (n = 213, 85.2%; 164, 65.6%). Of the houses who enrolled for waste collection, between 201-300 (47.6%) and 100-200 (42.9%) utilized private waste contractors. Although the license specifies once per week, waste collection is inconsistent and typically occurs once every two weeks (52.4%); charges, on the other hand, are variable and exceed the established rates. Undue financial backing from the LGAs, impassable areas, incompatible law, poor advertisement and awareness, political influence, exorbitant leachate treatment fees, and poor health were among the operational issues confronted the private garbage operators. The elements that affect the way the private sector of SWM operates and attracts customers were found to be as follows: non-cooperation of residents (n = 8, 38.1%), poor nearness to buildings (n = 9, 42.9%), and the lax enforcement of hygiene regulations (n = 4, 19.0%). The report suggests that in order to provide residents in Ibadan Metropolis with high-quality services, private refuse operators should regularly monitor and oversee the collection of solid waste.
Enhanced Soil Decontamination via Electrokinetic Removal of Organic Pollutants Ngieng, Hui Yee; Jusoh, Muhammad Noor Hazwan; Ahmad, Noraziah; Al Masud, Md Abdullah; Samaraweera, Hasara; Mohamed, Mohamed Mostafa
Industrial and Domestic Waste Management Volume 4 - Issue 1 - 2024
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/idwm.v4i1.442

Abstract

Soil pollution is one of the concern issues in the Asia region. Soil acts as a shelter for underground microorganisms and provides nutrients for plants. Most of the organic contaminants are sourced from agriculture and industrial areas. Organic contaminants which are volatilized and immiscible lead to air and water pollution. Electrokinetic remediation is a technology that has been developed for soil remediation since a few decades ago. It is not fully developed and is still under investigation. Electrokinetic remediation is being applied to improve the removal efficiency of organic contaminants which exist in low hydraulic conductivity of soil or fine-grained soil.  Generally, a low direct current, 1DCV/cm is applied. Facilitating agents including surfactant and co-solvent combined with electrokinetic remediation eliminated more organic contaminants compared with electrokinetic remediation alone. Electrokinetic remediation with the addition of bioremediation or phytoremediation process manipulates the transportation of organic contaminants in soil to increase the efficiency of remediation technologies. Electrokinetic remediation is recommended due to its flexibility, cost-effectiveness, and safety. One of the drawbacks is low effectiveness in removing non-polar organic pollutants due to weak desorption capacity and poor solubility in water. Co-solvents and surfactants can be introduced as alternatives to enhancing the solubility of non-polar pollutants and reducing surface tension, which improves their mobility within the soil matrix. These facilitating agents help improve the overall effectiveness of electrokinetic remediation, particularly for challenging contaminants.