cover
Contact Name
Rosalina
Contact Email
rosalina@president.ac.id
Phone
+6281218000246
Journal Mail Official
rosalina@president.ac.id
Editorial Address
Jalan Ki Hajar Dewantara Kota Jababeka, Cikarang, Bekasi 17550
Location
Kota bekasi,
Jawa barat
INDONESIA
IT For Society : Journal of Information Technology
Published by President University
ISSN : 25032224     EISSN : 2527595X     DOI : 10.33021
Core Subject : Science,
IT For Society (ISSN 2503-2224); E-ISSN 2527-595X) is a biannual peer-reviewed journal published by President University. The journal has a scope relevant and related (but not limited) to information technology and information system.
Articles 100 Documents
Penggunaan Stacking Classifier Untuk Prediksi Curah Hujan Diky Djafar Sidik; Tjong Wan Sen
IT for Society Vol 4, No 1 (2019)
Publisher : President University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1025.128 KB) | DOI: 10.33021/itfs.v4i1.1180

Abstract

Curah hujan sebagai bentuk informasi dari data meteorologis, penting dalam segala kegiatan manusia yang berhubungan dengan alam, oleh karena itu prediksi atas curah hujan dengan hasil yang akurat merupakan hal yang sangat penting. Salah satu metode yang digunakan untuk prediksi/klasifikasi curah hujan adalah data mining dengan berbagai algoritma dan parameter data yang berbeda. Pada penelitian ini digunakan penggabungan metode klasifikasi dengan Teknik Ensemble Stacking/Stacked Generalization yang menggunakan Naïve Bayes dan C4.5 sebagai base learner dan KNN sebagai meta learner untuk klasifikasi curah hujan. Dataset yang dipergunakan adalah data klimatologi harian yang diambil dari website resmi BMKG (Badan Meteorologi, Klimatologi, Dan Geofisika) untuk stasiun UPT Bandung, Bogor, Citeko dan Jatiwangi dari periode 01 Januari 2000 sampai dengan 31 Desember 2018. Dengan menggunakan tiga skenario pengujian dan validasi menggunakan 10 fold cross validation diperoleh bahwa metode stacking dapat meningkatkan akurasi dari base classifier.
NETWORK DEFENSE SYSTEM MONITORING THROUGH A MOBILE APPLICATION Lalu Muhammad Aryandi Azrin; Abdul Ghofir
IT for Society Vol 4, No 2 (2019)
Publisher : President University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (796.516 KB) | DOI: 10.33021/itfs.v4i2.1185

Abstract

paper proposed a way to secure and protect pc or laptop remotely via mobile device. These two device communicate by exchanging information or data using database connection. There will be two applications that are developed, windows-based application and mobile application. The proposed scheme used some firewall configuration and log management to complete the process. The firewall configuration will block computer attacks such as Denial of Service. Log management is to generate a specific log file if there is a possible threat. It will then invoke. the windows application to update the database which is regularly accessed by mobile application. It then alerts user on possible attack or threat.
SISTEM INFORMASI MONITORING DAN PERBAIKAN MESIN PRODUKSI BERBASIS ANDROID PADA PT KATSUSHIRO INDONESIA Marsigit Marsigit; Tjong Wansen
IT for Society Vol 5, No 1 (2020)
Publisher : President University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (434.634 KB) | DOI: 10.33021/itfs.v5i1.1206

Abstract

Dalam usaha meningkatkan produktivitas, efisiensi, dan efektivitas dari sumber daya yang dimiliki suatu perusahaan harus terus melakukan inovasi–inovasi dalam proses produksinya. Pada zaman modern sekarang ini mesin produksi yang yang handal sangat membantu dalam proses produksi pemeliharaan dan perawatan yang tidak baik akan menghambat inovasi-inovasi proses produksi, kualitas dan kuantitas dari hasil produksi. Di sisi lain, dibutuhkan sistem otomasi yang dapat mencatat kinerja mesin produksi dan permasalahannya berupa Sistem Informasi Monitoring dan Perbaikan Mesin Produksi berbasis Android. Dengan adanya ini maka maintenance dapat lebih mudah dalam memonitor dan memperbaiki mesin-mesin yang bermasalah. Sistem ini juga meghasilkan laporan tentang permasalahan yang terjadi pada mesin produksi yang langsung diterima pihak maintenance.
Comparison of Adaptive Boosting and Bootstrap Aggregating Performance to Improve the Prediction of Bank Telemarketing Agus Priyanto; Rila Mandala
IT for Society Vol 5, No 2 (2020)
Publisher : President University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (987.227 KB) | DOI: 10.33021/itfs.v5i2.1294

Abstract

Background: Telemarketing is an effectivemarketing strategy lately, because it allows long-distanceinteraction making it easier for marketing promotionmanagement to market their products. But sometimes withincessant phone calls to clients that are less potential to causeinconvenience, so we need predictions that produce goodprobabilities so that it can be the basis for making decisionsabout how many potential clients can be contacted whichresults in time and costs can be minimized, telephone calls canbe more effective, client stress and intrusion will be reduced.strong.Method: This study will compare the classificationperformance of Bank Marketing datasets from the UCIMachine Learning Repository using data mining with theAdaboost and Bagging ensemble approach, base algorithmusing J48 Weka, and Wrapper subset evaluation featureselection techniques and previously data balancing wasperformed on the dataset, where the expected results can beknown the best ensemble method that produces the bestperformance of both.Results: In the Bagging experiment, the best performanceof Adaboost and J48 with an accuracy rate of 86.6%, Adaboost83.5% and J48 of 85.9%Conclusion: The conclusion obtainedfrom this study that the use of data balancing and featureselection techniques can help improve classificationperformance, Bagging is the best ensemble algorithm from thisstudy, while for Adaboost is not productive for this studybecause the basic algorithm used is a strong learner whereAdaboost has Weaknesses to improve strong basic algorithm.
Calorie Counter and Diet Tracker Rosalina Rosalina; Uci Suraitha Karina Br Sitepu
IT for Society Vol 1, No 1 (2016)
Publisher : President University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (688.817 KB) | DOI: 10.33021/itfs.v1i1.21

Abstract

Diet is the amount of food consumed by a person or organization, and the way a healthy diet does not mean reducing food portion only. But the meaning of the diet can be described as a set pattern of our own food. Various ways of healthy diet foods can be developed that is appropriate, then, directly or indirectly, to obtain and provide sufficient energy for our bodies even though we can gain the benefits of the diet is that we run with our weight loss. Many people do not know how to calculate how many calories they consume every day, and sometimes the calories consumed exceed the calories they need per day. This research discusses how people can manage a healthy diet based on daily calorie intake. Here will discuss a wide variety of diets such as weight loss, and diet for people with diabetes, cholesterol, gout, stroke, and hepatitis. This research help user regulating daily caloric intake according to the weight and height and also help user to calculate and keep the absence of excessive caloric intake per day.
Frekuensi Dominan Dalam Vokal Bahasa Indonesia Tjong Wan Sen
IT for Society Vol 1, No 2 (2016)
Publisher : President University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (472.69 KB) | DOI: 10.33021/itfs.v1i2.302

Abstract

Pengenalan ucapan otomatis sudah dikembangkan selama lebih dari empat puluh tahun dan masih perlu untuk terus dikembangkan agar dapat memiliki kemampuan yang menyerupai manusia. Teknologi ini sangat bermanfaat tetapi hingga saat ini masih belum bisa dipakai secara umum dengan mudah dalam aktivitas manusia sehari-hari. Ketersediaan pilihan bahasa pun masih menjadi kendala, diperlukan waktu pelatihan yang cukup panjang untuk masing-masing bahasa yang diinginkan. Salah satu bahasa yang banyak digunakan di dunia adalah Bahasa Indonesia. Meskipun demikian belum banyak sistem Pengenalan Ucapan Otomatis yang menggunakan Bahasa Indonesia. Beberapa sistem yang dikembangkan oleh perusahaan besar telah memiliki pilihan Bahasa Indonesia, tetapi basis data yang digunakan tidak dapat diakses oleh masyarakat umum. Oleh karena itu perlu dikembangkan basis data suara ucapan dalam Bahasa Indonesia. Dalam artikel ini dilaporkan pengembangan data suara ucapan vokal Bahasa Indonesia. Pengumpulan data dilakukan dengan cara merekam suara vokal dari berbagai sumber. Sumber ucapan dibedakan secara etnisitas, jenis kelamin dan usia. Dari masing-masing kelompok diidentifikasi kelompok frekuensi yang dominan. Himpunan frekuensi dominan antar kelompok tersebut  kemudian dibandingkan satu dengan lainnya untuk mengetahui persamaan dan perbedaannya. 
Analisa Perbandingan Kinerja Algoritma Kolaboratif Filtering Rosalina Rosalina; Hokki Putra Handika
IT for Society Vol 3, No 01 (2018)
Publisher : President University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (985.762 KB) | DOI: 10.33021/itfs.v3i01.579

Abstract

Transportation Management System is very needed in optimize efficiency and effectiveness on logistics company. One of the most important part of transportation management system is determining delivery route from a depot to each customer. A lot of studies have been done about determining the best route in a shipping ritation with various algorithms. In the previous research, determination of delivery route is done without any implementation in the application. During the route determination is still done manually it will make a flow process in the company is not maximize. Model development aims to make an implementation application that serves to determine delivery route based on the problem of vehicle routing problem using the nearest neighbour method which is restricted to heavy loads in the transportation. Implementation of route determination an application will be done based on business process in transportation company, named PT. X,  so it is necessary to observe the company. Compared to previous research, this research will determine delivery route in application based on the problem of vehicle routing problem using the nearest neighbour method.
Electronic Dance Music Launchpad Composer Android Application Nur Hadisukmana; Ida Made Santika Kusuma Yogi
IT for Society Vol 3, No 02 (2018)
Publisher : President University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (619.969 KB) | DOI: 10.33021/itfs.v3i02.584

Abstract

Music is the art of combining vocal or instrumental sounds or tones in varying melody, harmony, rhythm, and timbre. Music can come from any instruments, even there are many musician use household furniture to create a music. Nowadays, the development of music industry is much influenced by technology. One new genre music that emerge because of technology development is EDM. EDM is stand for Electronic Dance Music. EDM is a broad range of percussive electronic music genres produced largely for nightclubs, raves and festival. A lot of software, applications and tools were created to compose the sound to create EDM. Although these software are easy to install but most of these software are difficult to use and take time to learn it. What people need in this era are simplicity, portability, user friendly and easy to use.
IMPLEMENTATION OF K-MEANS ALGORITHM FOR INFORMATION TECHNOLOGY FRESHMAN CLASS DIVISION Arfan As’Sidiq; Rila Mandala
IT for Society Vol 4, No 1 (2019)
Publisher : President University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (861.12 KB) | DOI: 10.33021/itfs.v4i1.1170

Abstract

Almost all universities divide their IT freshman into classes randomly or based on students score, either their score during the selection test held by the university or National Examination score. Universities often find case that a class consists of all ‘smart’ students and a class consists of all ‘lazy’ students. This thesis intends to create an application to help universities divides their Information Technology freshman into classes based on freshman competency and experience about Information Technology (IT) on the senior high school. The experiment is conducted by collecting data IT students who are not in the first semester. The data consists of their experience about IT as well as other knowledge fields and their current GPA. The results of the experiment show that from 50 data samples collected, the application correctly predicts 34 students GPA range based on respondents competency with IT and other knowledge fields during their study in senior high school.
Prediksi Harga Minyak Kelapa Sawit Dalam Investasi Dengan Membandingkan Algoritma Naïve Bayes, Support Vector Machine dan K-Nearest Neighbor Deny Haryadi; Rila Mandala
IT for Society Vol 4, No 1 (2019)
Publisher : President University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (440.049 KB) | DOI: 10.33021/itfs.v4i1.1181

Abstract

Harga minyak kelapa sawit bisa mengalami kenaikan, penurunan maupun tetap setiap hari karena faktor yang mempengaruhi harga minyak kelapa sawit seperti harga minyak nabati lain (minyak kedelai dan minyak canola), harga minyak mentah dunia, maupun nilai tukar riil antara kurs dolar terhadap mata uang negara produsen (rupiah, ringgit, dan canada) atau mata uang negara konsumen (rupee). Untuk itu dibutuhkan prediksi harga minyak kelapa sawit yang cukup akurat agar para investor bisa mendapatkan keuntungan sesuai perencanaan yang dibuat. tujuan dari penelitian ini yaitu untuk mengetahui perbandingan accuracy, precision, dan recall yang dihasilkan oleh algoritma Naïve Bayes, Support Vector Machine, dan K-Nearest Neighbor dalam menyelesaikan masalah prediksi harga minyak kelapa sawit dalam investasi. Berdasarkan hasil pengujian dalam penelitian yang telah dilakukan, algoritma Support Vector Machine memiliki accuracy, precision, dan recall dengan jumlah paling tinggi dibandingkan dengan algoritma Naïve Bayes dan algoritma K-Nearest Neighbor. Nilai accuracy tertinggi pada penelitian ini yaitu 82,46% dengan precision tertinggi yaitu 86% dan recall tertinggi yaitu 89,06%.

Page 1 of 10 | Total Record : 100