cover
Contact Name
Jaka Fajar Fatriansyah
Contact Email
jmef@ui.ac.id
Phone
021-78849145
Journal Mail Official
jmef@ui.ac.id
Editorial Address
Fakultas Teknik Universitas Indonesia Lantai 1 Kampus Baru UI Depok 16424
Location
Kota depok,
Jawa barat
INDONESIA
Journal of Materials Exploration and Findings
Published by Universitas Indonesia
ISSN : -     EISSN : 29625475     DOI : https://doi.org/10.7454/jmef
Core Subject :
JMEF publishes publications that report on R&D discoveries and fundamental understanding of phenomena with potential significance, as well as those that explore solutions to current engineering challenges in materials and mechanical engineering or related fields. JMEF includes original research, review and short communication articles. JMEF welcomes original articles on all aspects of materials science/engineering and mechanical engineering, including: 1. Materials synthesis, processing and manufacturing; 2. Advanced Materials; 3. Extraction metallurgy; 4. Physics of Materials; 5. Computational studies on Materials and Mechanical Engineering; 6. Fluid Dynamics and Heat Transfer; 7. Management Integrity and Reliability Engineering; 8. Mechanical systems; and related fields.
Arjuna Subject : -
Articles 5 Documents
Search results for , issue "Vol. 2, No. 1" : 5 Documents clear
Multi-Mode Total Focusing Method (MTFM) to Detect High-Temperature Hydrogen Attack (HTHA) – A Review Oktikawati, Anjar; Riastuti, Rini; Yuanto, Nursidi
Journal of Materials Exploration and Findings Vol. 2, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

High temperature hydrogen attack (HTHA) is a commonly observed harm component in carbon steels exposed to high temperature and pressure in a hydrogen-rich environment. Hydrogen together with carbon responds to produce methane. The formation of methane bubbles in steel can lead to loss of fracture toughness and lead to intergranular cracking. The main challenge of this problem lies in early warning systems that can detect these bubble clusters before they reach the advanced stage. Several advanced ultrasonic inspections have been developed over the years due to the challenges of inspecting materials for defects and discontinuities. These cover time-of-flight diffraction (ToFD), phased array ultrasonic testing (PAUT), total focusing method (TFM), multi-mode total focusing method (MTFM), and others. However, these ultrasonic techniques used are typically used to detect all possible material defects. This paper briefly discusses the advantages and disadvantages of these techniques. MTFM has been successfully applied to characterize isolated or clustered signs, whether tilted or not, using high-frequency probes. The defects grouped in this paper are believed to be methane bubbles or HTHA. ToFD defect screening before aims to save time and money.
Utilization of Cellulose Symbiotic Culture of Bacteria and Yeast (SCOBY) with Sweet Tea Media as Methylene Blue and Brilliant Green Biosorbent Material Sigiro, Leonard Mateus; Maksum, Ahmad; Dhaneswara, Donanta
Journal of Materials Exploration and Findings Vol. 2, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The cellulose from Symbiotic Culture of Bacteria and Yeast (SCOBY) can be used as a biosorbent for dye adsorption, such as Methylene Blue and Brilliant Green. This study used sweet tea with a 6% of sugar concentration and 14 days of fermentation time to synthesize biosorbent material from SCOBY. The results from this synthesis are then characterized using FTIR, SEM, and BET. From the result of characterization, it was found that SCOBY has pores formed from cellulose. The results of the average pore size are 1.5976nm with a pore volume of 0.229cc/g, while the specific surface area is 143.244m2/g. The material that has been characterized is used to absorb the dye using Methylene Blue and Brilliant Green. The mass variation of absorbent is used in this study with variations of 0.5gr, 1gr, and 1.5gr and carried out to absorb the dye for three hours. The highest percentage of dye removal after three hours reached up to 100%, which proved that SCOBY is effective for dye removal.
Enhancing Compatibility and Mechanical Properties of Natural Rubber Composites Sianturi, Krisma Yessi; Nugraha, Adam Febriyanto; kristaura, Belle; Chalid, Mochamad
Journal of Materials Exploration and Findings Vol. 2, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pure natural rubber (NR) exhibits low mechanical properties, necessitating the incorporation of additives like vulcanizing agents and fillers. Carbon black and silica, conventional fillers, are relatively expensive and not environmentally friendly. This study explores using Oil Palm Empty Fruit Bunch (OPEFB) fiber as an affordable, abundant, and biodegradable alternative filler for NR. However, compatibility issues arise between the nonpolar NR and the polar OPEFB fiber. A latex-starch hybrid coupling agent (CA (NR-St)) was added to the composite formulation to address this. NR, OPEFB fiber, and the coupling agent were mixed using an open roll mill with a 10 phr OPEFB filler loading and coupling agent concentrations of 0, 1, 2, and 3 phr. Fourier-transform infrared spectroscopy (FTIR), rheology, and mechanical property tests revealed that the coupling agent improved the compatibility between NR and OPEFB fibers, as evidenced by increased tensile strength and stiffness. The composite with 3-phr coupling agent exhibited the best performance with tensile strength and stiffness values of 25.6 MPa and 3.7 MPa, respectively. This increase in mechanical properties has the potential to act as a catalyst for increasing the use of renewable materials in the rubber industrial sector, especially the automotive industry.
Estimating Remaining Life and Fitness-For-Services Evaluation of Fuel Piping Systems Purwidyasari, Sekar Putri; Kurniawan, Ahmad Isni; Ferdian, Deni
Journal of Materials Exploration and Findings Vol. 2, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Assets life extension are required to predict the design life expiry based on condition and effects of deterioration. The remaining life assessment will answer the questions about timing of the component or equipment will lead to failure and shall be evaluated by inspection and maintenance monitoring. This study elaborates process calculation and analysis by using remaining life assessment and fitness for services method according to API 579-1/ASME FFS-1 for process piping area. The result of remaining useful life estimation and estimated life has been proposed. There are 11 piping systems based on the condition monitoring with thickness measurements. The result is 2 piping systems was not reached more than 20 years of age and continue to the assessment of fitness for service. The result for Inlet Naphtha 946-TK-5 piping systems is accepted for assessment level 1, both the result of evaluating average measured criteria and evaluating minimum measured thickness. The piping systems can continue the operation until the estimated life. Another result for Discharge Crude 946-P1AB to CDU piping systems was not accepted due to the minimum measured thickness not met the criteria. Hence, the piping systems is potentially unsafe with the given data during the lifetime.
Development of Dynamic Risk-Based Inspection Using Forward Difference Approach for Pipe Failure Due to Uniform Corrosion Fatriansyah, Jaka Fajar; Nurullia, Zahra Nadia; Federico, Andreas; Priadi, Dedi
Journal of Materials Exploration and Findings Vol. 2, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The oil and gas industry is one of the world's largest and most influential energy contributors. All aspects involved in the operation of this industry are fundamental to be reviewed and managed correctly, especially by preventing or minimizing the failures that could occur. Uniform corrosion is the most common component failure mechanism that can cause failure in the oil and gas industry. The company's actions in managing and preventing the risk of this type of failure have a major role in the sustainability of the company due to the possibility of more significant impacts if the risk cannot be handled well, such as high inspection and handling costs, environmental impacts, and threats to work safety. In this study, the Dynamic Risk-Based Inspection (DRBI) method, which is a development of Risk-Based Inspection (RBI), is implemented to handle and analyze risks that are managed in real-time at each inspection period. Risk level analysis was carried out through data processing related to pipe thickness from the risk profile from the inspection results in 5 months using Igor and Rstudio software and calculating corrosion rates using the forward difference approach. Based on the analysis results, five risk levels of pipeline failure at PT. X due to uniform corrosion using DRBI was obtained, consisting of two medium risks and three medium-high risks. In contrast, only one risk level was obtained from the RBI method, namely medium-high. The risk value fluctuates greatly every month, causing the DRBI method to have a higher level of accuracy and the ability to detect potential risks in more detail than the RBI method.

Page 1 of 1 | Total Record : 5