cover
Contact Name
Yustria Handika Siregar
Contact Email
journal.ibm@gmail.com
Phone
+6285358615140
Journal Mail Official
journal.ibm@gmail.com
Editorial Address
Jl Pukat Banting IV NO 41 Medan Kecamatan Medan Tembung Kode Pos 20224
Location
Kota medan,
Sumatera utara
INDONESIA
Sistem Pendukung Keputusan dengan Aplikasi
ISSN : 28292820     EISSN : 28292189     DOI : https://doi.org/10.55537/spk
Core Subject : Science,
Artikel yang diterbitkan dalam Sistem Pendukung Keputusan dengan Aplikasi adalah relevansinya dengan masalah teoretis dan teknis dalam mendukung pengambilan keputusan yang ditingkatkan. Naskah dapat diambil dari beragam metode dan metodologi, termasuk dari teori keputusan yang didukung komputer.
Articles 41 Documents
Prediksi Gap-Up Saham Berbasis Logistic Regression Menggunakan Indikator Teknikal Anisa, Yuan; Hafiz, Muhammad; Hadijah, Hadijah; Gani, Abdul
Sistem Pendukung Keputusan dengan Aplikasi Vol 4 No 2 (2025)
Publisher : Ali Institute or Research and Publication

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55537/spk.v4i2.1334

Abstract

This research aims to construct and test a predictive model for the gap-up phenomenon in stocks on the Indonesia Stock Exchange (IDX), with a case study on PT Bank Mandiri Tbk. (BMRI) stock. The research uses a quantitative approach by applying a Binary Logistic Regression model to analyze 1,213 daily historical data points from January 1, 2019, to January 1, 2024.Five technical analysis-based independent variables—vol_spike, rsi, prev_return, macd, and stochastic—were used to predict the probability of a stock gap-up occurrence.The analysis results show that the model as a whole is statistically significant (LLR p-value < 0.05), with an LLR p-value of (8.544e-11) and a Pseudo R-squared of 0.03389. Of the five variables, stochastic, macd, and prev_return were identified as significant predictors. Specifically, a high Stochastic Oscillator value has a strong positive influence on the probability of a gap-up. On the other hand, Moving Average Convergence Divergence (MACD) and Previous Return show a significant negative influence.These findings provide empirical evidence that a combination of technical indicators can be used to model and predict stock price movements at market opening. The implications of this research offer valuable insight for investors who rely on technical analysis as a basis for decision-making.